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1. On environmental microsimulation

Microsimulation is a modeling technique that operates at the
level of individual units, such as persons, households, vehicles, or
firms (International Microsimulation Association—IMA website). In
the last decade, environmental microsimulation (EMS), referring to
the use of microsimulation to study environmental issues, has
become a mainstream element of environmental studies and the use
of these models is on the rise. To illustrate, Fig. 1 shows the increase
in the number of papers that use the key words ‘‘environment + -
spatial + simulation + model,’’1 as cited in the ISI web-of-science
database between 1996 and 2007. Especially strong growth is
observed beginning from the year 2000 and we relate this to the
intuitive fit of EMS to researchers’ views of, on the one hand,
environmental systems function and, on the other, improvements in
computing capabilities, necessary for managing thousands of units
that are simultaneously changing and, often, moving in space.

2. The validation delusion

Being spatially and temporally explicit, EMS rests on the
availability of spatial data and an adequate representation of rules

governing the behavior and interaction between the ecological and
socio-economic systems in question. To represent a phenomenon,
EMS development follows standard validation frameworks that are
different from aggregate models, regarding the elementary model
units. First, a formal description of the phenomenon is proposed.
Each spatial unit of the system is characterized by several state
variables and their change in time is represented by several
parameterized dependencies (model rules) that describe the
dynamics of the state variables in time. Second, the parameters
of model rules are estimated, based on validation datasets. Third,
the model is verified by reproducing the aggregate dynamics of the
environmental pattern, usually of those that were previously
employed for parameter estimation. Fourth, the model is used to
investigate scenarios of future developments that always demand
extrapolation of model dependencies.

This positivistic path enforces the developer’s Occam’s razor, so
he or she always aims at minimizing the number of the unit state
variables and rules parameters. However, to guarantee the
sufficiency of such minimal parameterization, one needs experi-
mental datasets that cover the entire domain of parameter
variation. In spatially distributed systems considered by EMS,
one should be sure that the model rules are valid over the whole
modeled area. Inadequate description of the system dynamics over
a part of it will result in representation adequate for the ‘‘measured
islands’’ only. The risk is evident—one can never be sure of the
importance of unmeasured parts for the overall dynamics of the
region. The dynamics of these parts might dominate the entire
system and result in uncontrolled deviation between models and
real-world trajectories.
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A B S T R A C T

This special section of Ecological Complexity includes four papers that represent the use of

microsimulation to study environmental problems. In the opening paper, we focus on the problem

of environmental microsimulation (EMS) evaluation. We claim that the backbone of EMS lies in the

developer’s ability to capture the mechanisms that govern real-world dynamics and propose to

substitute the real world by its virtual copy to investigate this ability. Namely, we shall employ EMS at a

certain ‘‘likelihood’’ resolution and consider the unlimited data set generated by the model as a surrogate

of reality. One can then sample this virtual world and investigate whether the methods of data analysis,

model formulation, parameter estimation and model calibration, employed for the analysis of the real

world, are sufficient to reveal à priori known mechanisms. A failure will manifest the inability of the

researcher to capture real-world effects.
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However, it is hardly, if ever, possible to cover the entire area of
model application with field observations. To take as an example, a
case drawn from the field of rainfall, runoff and vegetation
prediction, Fig. 2 presents two datasets obtained for the same
rainfall catchment area. The first comprises field measurements of
vegetation biomass, plotted against the contributing runoff area
for several plots located along a semi-arid catchment in the center
of Israel. The second presents the biomass values, as extracted from
an IKONOS image, using NDVI, plotted against the corresponding
runoff contributing area calculated from a DEM for every
10 m � 10 m unit of the IKONOS image. As can be seen, the
locations of field measurements within the catchment area cover a
wide, yet, insufficient spectrum of parameters. Some parts of the
parameters’ space are over-represented, while others are under-
represented or not measured at all.

Benenson (2007) discussed similar problem regarding differ-
ences in spatial resolution of the real processes and their

representation by EMS. Using the Game-of-Life example, he
demonstrates the fact that a view of the system, at spatial or
temporal resolutions coarser or finer than the ‘‘true’’ resolution of
unit behavior, results in model rules that are completely different
from the original rules of unit dynamics. He then raises the
question: How one can know the ‘‘true’’ spatial resolution of the
processes? If one cannot, does the fit between EMS models and
data mean more than just an approximation of the observed data
sets with the regression of ‘‘another kind’’? And, we continue, how
can one ascertain if our model rules really reflect those
mechanisms that govern the environmental system?

Benenson’s comments stress the relevance, for EMS, of the
general problem of the unavoidably good fit of the multi-
parametric models, raised by Douglas Lee for the case of non-
spatial models in the mid 1970s (Lee, 1973, 1994). Each logically
‘‘reasonable’’ model that possesses a sufficiently high number of
parameters can be fitted to the limited set of field measurements. A
good model fit cannot, therefore, guarantee that the model rules
reflect the underlying mechanisms of real-world dynamics.

That is, EMS models are only seemingly ‘‘better’’ than the
standard comprehensive models of the 1970s and 1980s and the
skeptical user could always regard them as just another tool of
heuristic prediction of time series. The question we therefore pose
is: Are we able to extract inherent mechanisms that govern a real-
world system with calibration and verification procedures?

We believe that the rules that govern the real-world system are
more robust in the face of changes in spatial and temporal
resolution than the Game-of-Life and we propose to investigate our
ability to reveal them, by studying the artificial world created by
the model itself.

3. The alternative: M-world and its multi-scale views

To overcome the problem of the unavoidably good fit, we
propose to substitute for the real world its virtual copy and then
study our ability to recover its à priori known structure with the
methods we employ when modeling the real world. This can be
done by employing the outputs of a model M, employed at a
highest possible resolution, as a surrogate for reality. In our field of
investigation, this resolution is usually determined by the digital
elevation model (DEM) of surface height and remote sensing
images of the environmental conditions. The model output – the

Fig. 1. A graph representing the frequency of research papers on environmental

microsimulation, based on a search of the key words: Environmental, Spatial,

Simulation, Model, in the ISI Web of Knowledge between the years 1996 and 2007.

Fig. 2. A comparison between field data and remotely sensed data of the representation of the parameter space of a runoff contributing area versus vegetation production in a

semi-arid site.
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M-world – is externally indistinguishable from the (R)eal-world;
however, the M-world database contains all possible trajectories
characteristic of every combination of M-world parameters. The
unlimited ‘‘experimental’’ data can be considered at the initial, or
any lower resolution, to seek for the unambiguous methods of
rules extraction and parameter estimation and to investigate the
sensitivity of these methods to spatial and temporal resolution of
the data.

4. M-world components

The M-world is based on two components. The first is a spatially
and temporally explicit database that can be used for full multi-
scale (multi-resolution) representations of the spatial phenom-
enon in question. With recent satellite data – at meter and even
sub-meter resolutions – and with stereo-pair satellite and airborne
data, the road is open for the use of land cover and topographical
data as a standard component for constructing our EMS M-world.
Additional components of the M-world database can be high-
resolution vector GIS layers, accumulated during the last decade
over vast areas in regards to land-uses and road networks.

The second component includes the set of candidate model
mechanisms that represent our view of the real world. The model
rules are usually based on the researcher’s intuition and experience
and, usually, the rules are ordered according to their likelihood. A
minimal set of model rules is then chosen and the model
parameters are estimated in a way that is also chosen by the
researcher.

This is the stage on which we propose to focus. Let us consider
the constructed model M at a highest possible spatio-temporal
resolution and deploy the output of M as a surrogate for the reality.
Is the spatial distribution of the experimental plots sufficient to
recognize the rules that govern M? Then, let us generalize M’s
output and ask the researcher to estimate model rules and
parameters again, based on the real world or modified pattern of
the experimental plots. Are our theoretical views sufficient to
construct the models rules that govern the entire M-world and not
only the limited set of observations we have at hand? And, finally,
do the extracted rules generate the correct prediction, when the
model parameters are beyond the intervals available in observa-
tions? We do believe that the M-world studies may serve as litmus
paper for the methods of model design as applied in EMS studies.

5. The papers

This special section focuses on simulating real-world phenom-
ena with the help of GIS data. The papers consider dynamics of
cities, epidemics, agricultural economics, and conservation of
avian species, thus providing and verifying models of different
environmental phenomena. Al-Ahmadi et al. (2009) apply urban
cellular automata and fuzzy set theory to capture the uncertainty
associated with the automata transition rules. The authors
compare two methods of calibration: genetic algorithms and
simulated annealing. Different patterns of urban development are

studied and nine scenarios are devised to capture the effect of
different development factors and their interactions.

The paper of Laperrière et al. (2009) investigates individual-
based models of flea and rat behavior, aimed at description of
plague transmission. The model enables a description of the
disease dynamics and transmission at a level of individual
organisms, in order to represent the collective dynamics of the
disease in the flea-rat community in space and time. The sensitivity
of the spread rate to the initial population size and spatial
distribution is studied and the simulation results are compared
with the theoretical ones.

Bennett et al. (2009) investigate a spatially explicit, individual-
based, model of ‘‘disturbance activities,’’ to explore effects of the
spatial patterns of anthropogenic disturbance on the wildlife
dynamics, for two case studies of avian species. They compare the
influence of the pathways in proximity to and at the periphery of
the nesting and foraging habitats of the yellow-headed blackbird
and, in the second case study, the impact of unrestricted
movement of recreationists on a breeding colony of Barbastelle
bats.

Hynes et al. (2009) analyze the effects of a carbon equivalent
tax on average family farm income, at the level of the individual
farm and over the region. Simulating annealing techniques are
employed to statistically match the Irish Census of Agriculture to a
sample of representative farms and thus to generate a synthetic
population of Irish farms. Their spatial micro-simulation indicates
a heterogeneity in the farm population and demonstrates that (1)
there would be significant regional variation in the burden of an
agricultural tax, if based on a rate per unit of methane emissions;
and (2) redistribution of the methane tax revenue, as an
environmental subsidy, would encourage farmers to participate
in the proposed agri-environmental scheme and improve the state
of the low income farms.
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