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The paper reviews different approaches to urban population from the point of view of the
theory of complex systems. Regiorzal  models deal with large numbers of urban regions
involved in exchanging population and resources among themselves. In contrast, ecological
models deal with several qualitatively different types of relationships between a small number
of components, aimed at understanding the most general laws of urban dynamic. Two
relatively new approaches, namely Cellular Automata and multi-agent ones describe the
macro-processes resulting from uniform collective processes at the micro-level of land parcels
and migrating city individuals. Recent results of the multi-agent simulations regarding
abstract and real-world systems are presented in more details.
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1 URBAN MODELING: FROM INTEGRAL
DESCRIPTION TO THE DESCRIPTION

OF CITY COMPONENTS

Approaches to urban population dynamics model-
ing evolved in parallel to the evolution of the theory
of complex systems. Historically, the regional
approach dated from the sixties and rooted in
cybernetics of the fifties, was the first developed.
Regional modeling is based on the presentation of a
geographical system (city, metropolitan, adminis-
trative region) by means of “zones”, which exchange
population, goods, capital, etc. among themselves.
Most regional models are economically oriented,

with each zone characterized by a vector of socio-
economic indicators. Components of this vector are
numbers/proportions of population groups in a
zone according to their age, culture, education or
employment, as well as the numbers/proportions of
jobs in different industries, dwellings of different
kinds, services of different types, etc.

The initial goal of regional approach was the
simulation of real systems. This operational aspect
turned out to be problematic after  i ts  init ial
applications. On the one hand, even a minimal
division of a city’s territory into zones and its
population into socio-economic groups requires
dozens of equations and the estimation of hundreds
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of parameters. On the other, although the behavior
of solutions of the regional models is insensitive
to some of parameters and sensitive to others, the
sets of the most influential parameters cannot be
identified until construction of the model has been
completed. The inconsistencies were resolved dur-
ing the 1970s and 1980s with the development of
the general theory of complex systems. Seminal
works by Prigogine (Prigogine, 1967; Nicolis and
Prigogine, 1977) on “dissipative systems” and by
Haken (1978,1993)  on “synergetic? made clear that
open complex systems (including urban ones) reveal
common laws of behavior. Stated briefly, according
to Haken,  for example, the evolution of external
“control” parameters entails the bifurcation of
city dynamics. In the vicinity of the point of
bifurcation, the trajectory of the system belongs to
a low-dimensional subspace, which is defined by
slowly varying characteristics of the system and
can be described by few “order parameters” that
“enslave” the rest of system’s rapidly changing
“fast” characteristics. The new factors, which re-
present slow order and fast characteristics of the
system are functions of the original variables, but
do not coincide with them.

The results of complex system theory, which
became the “paradigm” for regional analysis, essen-
tially influenced the future of urban modeling. The
paradigm basic idea is as follows: A qualitative
understanding of urban dynamics does not demand
a detailed description of all the interrelations estab-
lished among the components. We are required to
understand only the most important and, perhaps,
latent orders of urban dynamics, to classify their
possible interactions, and to interpret qualitatively
different outcomes. As for quantitative description
of urban dynamics, the problem remains open if
the order parameters uncovered by the mathe-
matical analysis differ from those variables we are
interested in.

Consequently, we can understand urban dyna-
mics qualitatively by reducing the number of com-
ponents and socio-economic indicators of the model
from hundreds to a few units. In contrast, in order
to study those dynamics quantitatively, we have to

include the additional information necessary to
provide clues  about  the internal  orders  of  a
certain urban system.

The achievements made by the qualitative
approach are based on the application of mathe-
matical ecology models to urban systems (Day,
1981;  Dendrinos and Mullal ly ,  1982;  1985;
Zhang, 1989; Dendrinos and Sonis,  1990). Regard-
ing population dynamics, we can cite studies of
competition between two social groups for space
(Zhang, 1989), or studies of “predator-prey”
relationships between density and economic
status of city population (Dendrinos and Mullally,
1982; 1985).

The novel successor to multi-component regional
modeling is the Cellular Automata (CA) approach to
modeling city infrastructure (Tobler, 1979; Phipps,
1989; 1992; Phipps and Langlois, 1997; White and
Engelen, 1993; Batty and Xie, 1994; Durrett and
Levin, 1994; Wu, 1996; White et al., 1997; Rapini
and Rabino, 1997). Formally, a CA is a regular
lattice of cells appearing in alternating states, which
changes according to the state of the cell itself and its
neighbors. In urban applications, cell states reflect
properties of the city’s parcels, namely, the type of
land usage or economic potential. The definition of
cell states as land uses entails essential constraints
on CA applications. First, it implies limitations on
the cell size - the latter should be sufficiently small
to retain internal homogeneity; second, it places
lower limits on the duration of the model’s iteration
- land usage does not change in days or even
months. At the same time, for properly chosen
characteristic cell size and time step, the estimation
of CA parameters can be done straightforwardly,
according to the city maps of consecutive years
(White and Engelen, 1993).

An important brand of CA models simulates
the fractal structure of the city. Fractal and CA ap-
proaches differ in the mechanisms they use for
generating urban patterns. From the broad spec-
trum of local interaction mechanisms, fractal
models utilize the Diffusion Limited Aggregation
scheme, which allows to generate spatial patterns of
given fractal dimension.



POPULATION DYNAMICS IN THE CITY 1 5 1

CA and fractal approaches are very promising
regarding the description of the physical structure
of a city. However, for obvious reasons, they do
not account for “soft” component, namely, for the
structure and distribution of the city’s population.
Spatial population dynamics in the city is an out-
come of the individuals’ decisions and residential
behavior. The latter are considered explicitly in the
framework of the multi-agent (MA) models (Maes,
1995; Openshow, 1995; Portugali and Benenson,
1995; 1997; Conte etal., 1997; Troitzschetal., 1996).
The general aim of MA models is to investigate the
consequences of social interactions in the urban
context. Individuals are represented in MA models
as free agents who exhibit the economic and cultural
properties of human beings and who change their
location in the city. In the MA framework, spatial
and temporal resolutions are constrained from
above: first, the residential decision is based on
information on separate apartments or houses;
second, relatively high numbers of individuals
change their residence during any month or even
shorter time interval. As a result, MA models study
rapidly transpiring urban phenomena, particularly
the emergence of residential segregation in the
urban space.

To conclude, regional models deal with large
numbers of urban regions involved in exchanging
population and resources among themselves. In
contrast, ecological models, which deal with sev-
eral qualitatively different types of relationships
between a small number of components, aimed at
understanding the most general laws of urban
dynamic. A new set of models, CA and MA models
describe the macro-processes resulting from collec-
tive behavior at the micro-level of land parcels and
migrating city individuals. More specifically, CA
models deal with the relatively slow changes under-
gone by the urban infrastructure and provide the
background for MA simulations of relatively rapid
changes in the population’s spatial structure.

In this paper different approaches to urban
modeling with respect to population dynamics are
compared. A hierarchical combination of CA and
MA micro-approaches is suggested as a tool for the

simultaneous modeling of urban infrastructure and
population dynamics.

2 THE MAINSTREAMS OF URBAN
MODELING

2.1 Black-box Macro-Modeling

2.1 .I Ecological Approach

Much effort has been invested in studies of urban
population dynamics suggesting different types of
interactions between population groups and the
other urban components. Most of these results can
be considered as applications of ecological models
to urban situations. Mathematical ecology (see
Murray, 1993, among numerous texts) has an
almost hundred-year history of development, and
dynamic models of simple ecological systems con-
sisting of one or two interacting populations are
among the most elaborated examples of this
approach. Qualitatively, the behavior of a model’s
solutions depends on the feedback between popula-
tion density and growth rate for a one-species
system or on the type of inter-species interaction
for a two-species system. Several qualitatively
different types of feedback relations (linear, expo-
nential, etc.) and interactions (competition, pre-
dator-prey, parasite-host, etc.) have been studied
and their consequences classified. Many of the
subsequent results regarding plant and animal
species have direct urban interpretations. For
example, Dendrinos and Mullally (1982, 1985)
consider urban dynamics as interplay between the
city’s population size and an individual’s economic
status:

dX/(X*dt)=ol*(Y-Y,)-POX

dY/( Ye dt) = y l (Xm  -  X),
(1)

where X denotes relative population size, Y is
deflated per capita income, Xll is the city’s carrying
capacity in terms of population size, Y, is prevailing
deflated per capita income.
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The solutions of (1) depend on the type of
socio-economic interactions, the latter determined
by the parameters CX,  p  and y.  The estimates of
the parameters for 32 US metropolitan areas
(Dendrinos and Mullally, 1982) best fit those
interactions between population size and income
that correspond formally to the predator-prey type
of relationships and provide oscillating convergence
to an equilibrium. According to the parameter
estimates, the period of converging oscillations for
cities in the sample ranges between 20 and 150 years.

The above model does not account directly for the
critical process of spatial diffusion. The simplest
way to do so is to assume a radial symmetry of
population distribution and to add the diffusion
term to the equation for non-spatial population
dynamics. For a logistic description of population
growth, the resulting model looks as follows:

dN/dt=a.(l-N).N+D.(l/r*dN/dr

+ d2N/dr2), (2)

where r is the distance from the center of the area.
O’Neil(198 l), who investigated the ability of this

simple model to approximate the process of expan-
sion of the black ghetto in Chicago during 1968-
1972, obtained a good agreement of the solution of
the above equation with the observed data. The
equation that best fits the experimental data is as
following:

dN/dt  = 0.191 l (1 -  N) . N + 0.128

l (l/r - dN/dr  + d2N/dr2). (3)

The coefficient of determination equals r2  = 0.79,
and is significant at p < 0.001.

Zhang (1989) has been developing a theoretical
model of the urban dynamics in which the popula-
tion consists of two groups competing for space:

dX/dt  = a/o(a-h*X-c~Y).X-d~~X~Y

+ &-a  d2X/dr2, (4)
dY/dt=/?*(a-hX-c*Y)*Y-d2GCY

+ Dye  d2  Y/dr2,

where group densities X(r, t) and Y(r, t) depend on
distance r to CBD. Possible interactions between the
members of the groups are expressed by positive or
negative values of dl and d2. Zhang (1989) interprets
a positive dl and negative d2, for instance, as a desire
of less-educated population X to live with the more
educated population Y. Expressions DX. d2X/dr2
and Dye  d2  Y/dr2 describe the diffusion of the
individuals.

When solving for (4) we eventually obtain either a
homogeneous city where only X-  or Y-individuals
remain, or a city where both groups persist. Zhang
(1989) has proved that the number of qualita-
tively different outcomes of (4) is less than for the
corresponding non-spatial model. Namely, the
oscillating solutions do not exist, and we can con-
clude, therefore, that migration stabilizes urban
system dynamics.

To summarize, within the framework of ecologi-
cal approach urban dynamics is defined by interac-
tions between limited number of social groups. The
system’s dynamic patterns are qualitatively classi-
fied according to the types of interaction. For those
specific situations, where low number of variables is
sufficient, a correspondence between model results
and experimental data can be achieved.

2.2.2 Regional Models

Ecological models intentionally simplify urban
population structures and urban systems. The de-
scription of urban population dynamics that can be
attuned to real world situations demands plenty of
components and relationships are accounted for,
and regional models try to account explicitly for
urban complexity. In the regional framework, each
zone is characterized usually by two sets of vari-
ables, the first one representing the properties of the
city’s physical environment and the second those of
the city population. To illustrate, Peter Allen and his
colleagues (Allen and Sanglier, 1979; 198 1; Allen,
1982; Allen et al., 1986; Engelen, 1988),  by adopting
this approach, attempted to simulate the dynamics
of the city of Brussels, the economic development
of North Holland, the economics of Belgium as
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a whole, etc. We consider here the model of an
artificial city, “Brusseville”, whose structure reflects
that of Brussels (Engelen, 1988).

According to the logic of regional modeling,
Brusseville is divided into N=  36 spatial zones.
Each zone i is characterized by a vector vi, which
consists of “population” and “socio-economic” sub-
vectors. The population sub-vector, in turn, consists
of two sets of components, representing the proper-
ties of white- and blue-collar residents. Each set is
characterized by the number of active residents xi,
the number of non-active residents ni, and the
variables representing migration flows. The socio-
economic sub-vector accounts for the quality of the
neighborhoods, the housing stock Hi, and the level
of employment of different types (finance, heavy
industry, etc.). The crucial element of the model is
the definition of the zones’ interactions, the number
of which for a system divided into N  zones is of an
order of N2.  Bearing in mind the potential applica-
tions, the authors intentionally keep the number
of independent parameters describing these inter-
actions to an order of N. To do so, they introduce
the potential attractivity Ri of zone i and describe
residential movements as a two-stage process. At the
first stage emigrants leave the zones where they live;
at the second they choose a new residence according
to the zone’s attractivity, irrespective of the param-
eters of the zone they left. In order to account for the
distances between the zones of origin and destina-
tion, the attractivity of zone i for the migrant from
zone j is given by Ri  l exp(-T  . do),  where L& is the
distance between zones i andj.

The dynamics of population groups is described
in the model by means of the logistic relationships.
For instance, the dynamics of the active population
of zone i is described as

dxf/dt = @ l ns  l (JF  - xg>, (5)

where g denotes the population group (white-
or blue-collar), and ~~  is a net rate of employment
of non-act ive residents  ni as  whi te-  or  blue-
collar employers, and Ji is an overall potential
employment.

The dynamics of the spatial patterns generated by
the Brusseville model are studied according to scen-
arios. In one scenario, for instance, the canal that
crosses the city is replaced by a line of hills (Engelen,
1988). As a result of this dramatic change of the
city’s infrastructure, the industry that was concen-
trated along the canal spreads out along the peri-
meter of the city, where crowding is less and land is
cheaper. Following these changes white-collar resi-
dents move from the city’s outskirts towards the new
hill area, where they have good access to the CBD
and are far from the nuisances marred by industry.

Van Wissen and Rima (1988) constructed a com-
prehensive regional model of Amsterdam popu-
lation dynamics. They represent Amsterdam and
surrounding area by means of 20 zones. In each
zone, 11 dwelling types and 24 types of households
of four different sizes are distinguished. The
intensity of migration and the residential choice of
each family is dependent upon the age of the head of
household (according to 5-year  age categories) and
on the number of family members (seven groups). In
addition, immigration, emigration and birth and
death processes are included. The parameters of the
model were estimated based on detailed household
and migration data for each zone for the period
197 1 - 1984. The quality and resolution of empirical
data were sufficient to provide a very good approx-
imation of population and household dynamics.
For thirteen zones, the R2 statistics of correspon-
dence between actual data and model results were
higher than 0.9; for the remaining zones, excluding
one, it was not less than 0.5. Based on this corre-
spondence, two scenarios of Amsterdam population
and household dynamics for 1985-2000 were
compared. The first reflects central government
plans to build new dwellings in Amsterdam, while
the second reflects local government measures to
decrease construction quotas in the expanding
suburbs. The short period of prognosis implies
rather similar predictions for both scenarios. They
diverge at the level of 10 percent or less for most of
the parameters, including total population and
number of households as well as population and
household numbers per zone.
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Batty and Longley (1994) consider a similar, but
less detailed model of residential choice in Greater
London. In their study the city is divided into 32
zones, each one described by the percentages of
dwellings of four types, namely of purpose-built
flats, converted flats, row houses and single-family
houses. The probabilities of occupying the dwellings
of each type are considered as functions of the
distance between the CBD and the zone and of the
mean age of the dwellings in the zone. As in
Brusseville model, the attractivity of the potential
dwelling of a certain type does not depend on
individual’s current occupation.

The overall percentage of correct predictions
given by this less detailed London model is lower
than in an Amsterdam’s one and equals 0.432.
Spatially, prediction is much better for zones close
to the CBD and for the outermost suburbs than for
the intermediate zones.

A number of attempts (Anselin and Madden,
1990; Putman, 1990; Bertuglia et al.,  1994; Tadei and
Williams, 1994) have been undertaken to combine
the main components of the city in the framework of
one model. Bertuglia et al. (1994) present the most
general formulation of this approach - the Inte-
grated Urban Model (IUM). They declare the
following components as sufficient for the descrip-
tion of urban dynamics: the housing market, the
job market, the service sector, the land market,
and the transportation subsystem. The state of
these components is described by the following
groups of variables: the numbers of population
groups, the housing stock, industry, and employ-
ment according to branches. Spatially, the city is
divided into N  zones, where individuals can live
and work. The IUM operates with the flows of
population between the zones, while considering the
costs of the trips.

The dimensions of the model’s description are the
main problem of the IUM approach. In order to
describe the flow of workers, for instance, the model
accounts for the fraction of workplaces in zone j
occupied by workers living in zone i at the current
iteration, but occupied at the next iteration by
workers living in zone k. If the number of spatial

zones equals N, then the dimension of this descrip-
tion has an order of N3  (!) and it seems impossible to
obtain any reasonable estimates of the parameters.
As a result, the IUM is a representational rather
than modeling tool.

Thus, ecological models have a simple structure,
but deal with selected factors only, while regional
models are too complex and almost always lack
parameters’ estimates. Are there any intermediate
approaches? CA and MA models present a positive
response. Both are based on accounting for the local
spatial structure of the city.

2.2 Individual-based Micro-Modeling

The ecological and regional approaches utilize top-
down approaches to the complex system studies.
Within their frameworks, an urban system is
expanded into a predetermined number of compo-
nents, and this expansion is maintained throughout.
Micro-approach, in comparison, is based on a
bottom-up representation of the city as the collec-
tive of potentially infinite numbers of elementary
units whose interactions define dynamics of the
urban system at large. From the latter point of view,
the urban model must include at least two different
elementary units, namely land parcels and migrating
individuals.

The dynamics of the city as coverage of parcels is
studied by means of CA, while individual inter-
actions are considered in the framework of MA
models.

2.2.1 Cellular Automata as the Background
for Individual-based Modeling

The basic features of CA models are as follows:

- A city is represented by the two-dimensional
lattice of cells C,;

- Time advances in discrete steps;
- Each cell C,  is found in some state s that belongs

to a finite set S= {si,  s2, . . . , sK};
- The cells change their states according to local

transition rules. That is, the state of the cell itself
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and the states of the cell’s neighbors at the current
time step define the state of the cell at the next
time step.

Various versions of CA models include varying
in space and time form and size of the neighbor-
hood,  determinist ic  and stochast ic transi t ion
rules, dependence of transition rules on the loca-
tion of the cell within the lattice, the current state
of the cell, etc.

Tobler (1979) was the first to recognize and state
the advantages of CA approach for the describing
urban dynamics. Phipps (1989, 1992) and Couclelis
(1985) implemented a general CA model for the
description of urban dynamics. They recognized
and studied the phenomenon of the emergence of
regular spatial structures of cells from an initially
disordered lattice. This basic property of CA was
intensively studied during the 1980s for one-dimen-
sional CA models. Urban interpretations, however,
demand two-dimensional CA; their different
versions were investigated in a number of papers
(Phipps, 1989; 1992; Portugali et al., 1994; Durrett
and Levin, 1994; Hegselmann, 1996). The results
were quite similar to those obtained in one-dimen-
sional models. Namely, if we suppose that the cell
changes its state towards the modal state of the
neighboring cells, then CA as a whole evolves
toward the persistent “segregated” state. In this
state the CA consists of segregated domains of cells,
those within the domain having similar states.

Recently, a number of operational CA models at
the city and regional level were developed. Some of
these models well fit real-world cities (Batty and Xie,
1994; Itami, 1994; Benati, 1997; Wu, 1996; White
et al., 1997). As an example let us consider the CA
simulation of the city of Cincinnati (White et al.,
1997). The city is represented in the model as an
80 x 80 lattice of cells. Cell states represent land uses
and are of two classes: active states that can change,
namely housing, commerce and industry; and fixed
states, used to represent infrastructure, i.e. rivers,
railways, and roads. Although cells in fixed states do
not change, they can affect the transitions of other
cells from one state to another. Cell neighborhood

consists of the 112 cells lying within the circle of
radius six cells. Such unusually large neighborhood
permits a more realistic modeling of local inter-
action effects among land uses. In order to make the
model operational, the transition rules are stochas-
tic depending upon the current state of the cell and
on the cell location within the city lattice.

The simulations conducted by White et al. (1997)
were calibrated to fit Cincinnati land-use data,
beginning from 1960. In general, the model repro-
duces morphology of Cincinnati, both visually and
in terms of the statistical measures of spatial simi-
larity. Based on this correspondence, a series of
simulation experiments was held in order to clarify
the role of transportation network changes on
Cincinnati dynamics.

The generalized CA approach was implemented
in several other studies (Batty and Xie, 1994; Itami,
1994; Wu, 1996; Benati, 1997; Sanders et al., 1997).
In all of them, the outcomes significantly agree with
the dynamics of real cities.

In addition to its use in direct CA simulations, the
representation of a city as a lattice of cells provides
a basis for the fractal approach to the description
of urban morphology. The main assumption of
the fractal approach is that of self-similarity of
the pattern in case; in other words, zooming of the
city street network, housing, etc. pattern provides
geometrical structures similar to that at the previous
level of resolution. From the geographical point of
view, the fractal approach generalizes the classic
description of settlement hierarchies conceptualized
by Von Thunen and Christaller (Batty and Longley,
1994).

Self-similar geometrical patterns can be charac-
terized by a “fractal dimension”, which is a rational
number that nonetheless differs from the standard
topological dimension of one, two, or three. A
fractal dimension is used for the analysis
and comparison of different urban structures, e.g.
regional boundaries, traffic networks, or residential
and industrial areas (Batty and Longley, 1994;
Frankhauser, 1994; Schweitzer and Steinbrink,
1997). The estimates of the fractal dimensions for
urban housing patterns fluctuate between 1.3 and
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1.9, with a modal value about 1.7. The fractal dimen-
sions of urban networks (the topological dimension
of which equals one) fluctuates between 1.1 and 1.9,
with a modal value close to 1.4.

If a fractal dimension characterizes urban pat-
terns, then the model that generates the geometrical
pattern of a given fractal dimension can serve as
a tool for simulating a city’s geometry. The most
popular mechanism for generating fractal structures
is Diffusion-Limited Aggregation (DLA) and its
generalizations. This model is an extension of a
random walk model on a rectangular lattice.

Fractal models produce quite likelihood urban
patterns at low spatial and temporal resolution.
Frankhauser (1994) and Schweitzer and Steinbrink
(1997) have imitated in this way the rank distribu-
tion of settlements of Berlin metropolis in 1945
based on the data on 19 10. Batty and Longley (1994)
have made a thorough investigation of the fractal-
generating models, both at the theoretical level and
in relation to the growth of real-world cities. They
have demonstrated, for instance, very good corre-
spondence between the fractal dimension of actual
Cardiff land-use pattern and the model simulation -
1.772 versus 1.75.

To conclude, the encouraging results of the
simulations of several cities by means of CA
and fractal models make them serious nominees
for including among the standard tools used for
modeling urban infrastructure at low and inter-
mediate spatial and temporal resolution. Regarding
the human component, CA and fractal models do
not consider it at all. Straightforward scheme for
simulating social processes in the city is provided,
instead, by the multi-agent approach, presented
below in detail.

2.2.2 Multi-agent Simulations of Urban
Population Dynamics

CA models ignore two basic properties of a city as
a populated system. First, the city’s physical
structure develops according to the demands of
its population. Second, the city’s inhabitants, unlike
elementary units of non-living systems, are them-

selves complex systems, whose properties can
change during the course of the lifetime. In order
to account for these basic properties, MA approach
operates with a two-layer model. The first layer -
the city’s housing infrastructure - represents the
properties of urban housing; the second layer - free
human agents - represents individual citizens and
reflects their migratory movements (Portugali and
Benenson, 1995).

Individual free agents in the MA model have the
ability to estimate the state of the city on its two
layers and behave in accordance with information
regarding three levels of urban organization:

l The individual;
l The local - referring to the characteristics of

neighborhood and state of the neighbors;
l The global - referring to the state of the

whole city.

Based on this information, individual agents
immigrate into the city, occupy and change resi-
dential locations there, and leave the city when
conditions become unsatisfactory.

Free agents are characterized in MA models by
their economic status and cultural identity. Utilizing
a series of agent-based models, we were able to show
the emergence of different forms of cultural and
economic segregation. Moreover, by introducing
explicitly the ability of the agents to evolve we have
demonstrated the emergence of new socio-cultural
groups in the city space (Portugali et al., 1994; 1997;
Benenson and Portugali, 1995; Portugali and
Benenson, 1994; 1997). In the following, these
results are reviewed and expanded in two directions.
First, the theoretical MA model is implemented in
a real-world GIS environment. Second, the general
representation of cultural identity by means of a
“cultural phenotype” is introduced and studied.

2.2.2.1 Agent-based simulations of economic
interactions between individuals

In the economic version of the MA model,
the relationships between individuals and their
neighbors and neighborhood are based on those
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individuals’ economic status and the value of their
houses. Two implementations of an economic MA
model are considered below, the abstract one,
where a lattice of cells serves as the housing layer
and the GIS-based model with a map of the houses
and streets is taken as the background. While
the abstract version of the model lies in the main-
stream of CA and MA simulations, the purpose of
the GIS-based  version is to account for the hetero-
geneity of the spatial structure of the real-world
city and to implement the MA model as an
operational tool.

Sub-model of the housing infrastructure
Cellular Au toma ta representation of housing The
infrastructure of an abstract version of the MA
model is a square lattice of cells, which symbolize
houses. Each house jYij  can be either occupied by
one individual agent or remain empty. A 5 x 5
square with Hij  in the center is considered as the
neighborhood U(Hij)  of house Hij.  Houses differ in
their value Vij. For each time step, the value of the
house is determined anew. When an agent A
occupies house Hij, its value Vii is updated in
accordance with A’s economic status SA  (see
below) and the average value of the neighboring
houses. When a free agent leaves house Hij,  and
the latter remains unoccupied, its value decreases
at a constant rate.

The GIS  map qf houses and streets as a back-
ground Many high-resolution GIS-based maps
have recently become available. These maps make
it possible to substitute the abstract cellular space
background of the model by the housing struc-
ture of the real-world city. They, thus, facilitate
the study of the role of housing heterogeneity
and varying neighborhood structure in urban
dynamics. The GIS version of the economic MA
model used by us is based on a digital street and
housing map of a section of the Tel-Aviv metropol-
itan area at 1 : 500 scale. Each house is represented
by two variables, namely, the value of the house
and its capacity (number of apartments). As
above, the value of the house is updated at every
time step in accordance with the mean status of

its residents and the value of the neighboring
houses. Two among various possible definitions of
the neighborhoods are considered. Scenario A
(reminiscent of the CA-type city) takes into
account only the distances between houses; scenar-
io B accounts for the heterogeneity induced by the
city’s street network as well. For scenario A, the
neighborhood U(H) consists of all the houses loc-
ated at a specified distance from H. In scenario B,
it is assumed that the decisions made by agents are
influenced by the condition on their side of the
street only. In order to implement this suggestion,
the neighborhoods of houses located along several
specific streets were restrained to all those houses
situated at the same side.

Dynamics qf the economic status offree
human agents
The dynamics of the economic status Sk of agent A
occupying house H is described in a simple logistic
way:

S t-t1  = (RA  l Si l (1 -  SA)  -  m l V&)/(  V’)city,A

(6)

where RA is an individual rate of economic growth
and does not depend on t, m l Vh is a “mortgage
payment” and ( V ‘)city = Ckl{v,:,lk~~E  [L~ll-l
(A4 x A&)  is a mean value of houses over the city.

The local economic information Pt  available to
individual agent A, occupying a house H, is given
by the economic status of A’s neighbors and their
houses’ values in U(H). For CA representation of
the housing Pk  is a mean of the status of the
neighbors occupying the houses within U(Hii>  and
the values of the unoccupied neighboring houses.
For the GIS-based version Pt  is an average of the
mean status of agents located in the house Hand in
the neighboring houses.

The migration decision of agent A depends on the
absolute value of the difference SD*  between A’s
status SA  and Pt,  namely, on SDf\  = ISi -  P t (.
Below we call SD*  a local economic tension of an
agent A at location H.
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The average ( Vt)city of housing values over the
city gives the global economic information available
to each individual agent at iteration t. According
to (6), it feeds back the description of the agent’s
status dynamics.

Trade off between migration and changes
in an individual’s status
According to the model’s flowchart (Fig. l), at
every time step, each free agent A in the city
decides whether to move from or to stay at its
present location. It is suggested that for an agent
A, located current ly at  H, the probabil i ty of
leaving its current location increases monoto-
nously with an increase in an individual’s eco-
nomic tension Pt.  The probability of occupying an
empty house G when it is the only possible choice
decreases monotonously with an increase in indivi-
dual’s estimation of the economic tension at G
and to repeat, does not depend on the previous

location of that individual. For details of choice
process involving several vacant houses, see
Portugali et al., (1997).

The conjunction between individual, local, and
global factors can lead an individual agent A “to
decide” not to reside within the city in spite of the
high economic tension at its current location. The
reason for this decision might be a lack of attractive
vacant houses in the city. In this case either the
economic tension continues to increase, while it
can be occasionally resolved by the agent leaving the
city with probability pu.  Insolvent agents, whose
economic status has dropped below zero, leave
the city eventually.

Immigration
At every time step, a constant number of indivi-
duals try to enter the city from without and to
occupy a house. The economic status Si and
growth rate Rr of each immigrant I are assigned

Leave the city

N
the city? ’

cultural
identity

END

$ Change
status and

house value

Ljl  To occupy Y
a new r
house?

%To  leave

a house?

ElB E G I N

# - relevant to the cultural model only &- relevant to residents and immigrants

s- relevant to the economic model only % - relevant to residents only

FIGURE 1 Consequence of agent’s decision.
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randomly and independently. The distribution of
immigrants’ status is normal, with a mean equal to
the instantaneous agents’ mean status over the city
at previous time step and constant CV. The dis-
tribution ofR is also normal and independent of t.

Global consequences of individuals’
economic interactions

Cellular Automata representation of housing The
city economic structure is described in the model
by means of the distribution of housing values, the
distribution of the agent’s status and the distribu-
tion of the status growth rate. Irrespective of their
initial state these distributions converge to smooth
and correlating patterns during several hundred
iterations (Fig. 2(a)). After initial period of rapid
changes, they evolve very slowly, with rich/poor
domains moving slowly and stochastically
throughout the urban area (Fig. 2(b)).
GIS map background For scenario A, the

gradient of the housing values and individual
status is established after hundred iterations

(Figs. 3(a) and 3(b)). Subsequently it varies slowly
in the manner demonstrated for the cellular ver-
sion of the model. Scenario B was tested against
one wide street in the city. Referring to Fig. 3(c),
we see that the resulting distribution of the hous-
ing values is discontinuous, with abrupt disparities
between different sides of "Red" Street. "Red"
Street prevents penetration of the agents of high
(low) economic status into the quarters on each of
its respective sides, thus constraining the variabil-
ity of the steady distribution of the housing values
along the entire length of the street. Comparing to
CA version, the rigid street and housing patterns
restrict variability of the population distribution at
the slow stage of the city dynamics.

2.2.2.2 Individual cultural identity and
simulation of cultural interactions

between agents

Formal representation ofthe non-economic features
ofan individual should differ from one-dimensional

FIGURE 2 Economic MA-model: population distribution according to economic status and status growth rate. (See Color
Plate I.)
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FIGURE 3(a) Initial distribution of house values is random, uniform on [0,1]. (See Color Plate II.)

quantitative representation of economic character-
istics above. This is especially true regarding indivi-
dual’s cultural identity, which representation should
capture the multi-dimensional, nominal and quali-
tative character of the latter. Suggested below
"cultural code" is analogous to a genetic code, which
partially pre-programs an individual’s behavior

when creating groups or societies. In the genetics of
qualitative features as well in artificial life studies, it
is common to represent an individual’s genotype by
a high-dimensional binary vector of traits (Banzhaf,
1994; Kanenko, 1995). The cultural code is also
binary and, in contrast to genetic restrictions,
changing in response to the agent’s interactions with
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FIGURE 3(b) Distribution of house values at 7’: 200 for scenario A. (See Color Plate III.)

the neighbors, the neighborhood, and the city as a
whole. In consequence, individual’s residential be-
havior also changes.

Formal representation of the cultural code and
the dynamics of an agent’s cultural identity
The cultural identity of an agent A is described
by the K-dimensional Boolean cultural code

CA (CA, l, CA,2, CA,3, CA,K) where CA,/ {0, },
k 1,2, 3,..., K. Consequently, individuals of 2K

different cultural identities might exist in the same
city. The difference p, between agents A and B, ac-
cording to their cultural identities is measured by

p(CA, CB)-- Z(CA,k XOR cu,)/.K. (7)
k
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FIGURE 3(c) Distribution of house values at T= 200 for scenario B. Neighborhoods are defined as in A, but constrained by
the "Red" Street. (See Color Plate IV.)

In a manner similar to the economic version ofthe
model, an agent behaves in line with the available
individual, local, and global cultural information.
The representation of local cultural information is
related to the notion of local spatial cognitive
dissonance, introduced by Portugali and Benenson
(1995) and Haken and Portugali (1995). Applying

their general definition to the multi-dimensional
presentation of cultural identity, the local spatial
cognitive dissonance CDA Of agent A is defined as
an average of the differences between A’s cultural
identity and the cultural identities of its neighbors,
given by (7). As in the economic model, the higher
the local dissonance ofA, the higher the probability
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that A will leave its current location and try to oc-
cupy the alternate one. The probability of locating
at an empty house G decreases with the increase in
the estimate of potential spatial cognitive disso-
nance at G.

The influence of the global structure of the city
on an individual’s residential behavior increases in
the model with a rise in the level of residential
segregation. The global cultural information GDA
available to a free agent A is, thus, determined in the
model by the value of Lieberson’s (198 1) segregation
index LSX,  expressed as a probability of a member of
group Xlocated at house N to meet a member of its
own group within U(H). Visually, values of LSX
below 0.3 correspond to a random distribution of
the agents belonging to group X, while values above
0.8 correspond to one or several domains occupied
almost exclusively by these individuals. Formally,
for agents of identity CA,

GD; = max{O, (LSA  -  LS*)}/(l  -  LS”), (8)

where LS* is the threshold value of LS that
corresponds to the visually segregated pattern.

Local and global information influence an agent’s
cultural identity in alternative ways. High local
cognitive dissonance CD;  forces agent A to change
its cultural identity. In contrast, a high level of
segregation GDA  of agents having an identity CA
forces A to preserve its current identity. An agent
A’s sensitivity to local cognitive dissonance LA and
to global segregation GA (LA, GA  E  [0, 11)  are
properties inherent to A and independent of t.

If an agent A is forced to occupy its current lo-
cation in spite of high cognitive dissonance, then its
cultural identity can be changed. This occurs in the
model when the local tendency of an agent to vary
exceeds the global tendency to preserve its current
identity, that is when LA l CD;  > GA . GDf,.  If the
latter is true, then the probability that the ith
component of CA  will be changed is proportional
to the absolute value of the difference between the
fraction of the ith component among A’s neighbors
and its value (zero or one) for A. Additionally,
“mutation” of the cultural code is possible, with

probability r per component, although only one
component of the cultural code can be changed per
iteration.

Immigration
As the economic version of an MA model, at every
time step a constant number of individuals try
to enter the city and occupy a house there. The
cultural identity of the immigrants is assigned at
random, in proportion to the current fractions of
agents having each of the 2K  possible identities.

Trade off between migration and change of
an individual’s cultural identity
An inherent source of the cultural dynamics in the
model is the mutation process that prevents it from
becoming culturally homogeneous. An individual
agent located in a heterogeneous neighborhood of
non-zero dissonance, either succeeds in changing
residence or fails. If it fails, the agent either
changes identity towards the “modal” identity of
its neighbors (Fig. 1) or preserves its current
identity due to the high level of segregation of
agents of similar identity in the city. Unlike the
changes in the one-dimensional economic status, a
change in cultural identity does not necessarily
decrease the cultural diversity of the city. To
illustrate that, consider the agents located at a
boundary between two segregated groups of indi-
viduals of (0, 0, 0, . . . $0)  and (1, 1, 1, . . . , 1) identi-
ties. It is highly probable that the identity of an
agent (0, 0, 0, . . . , 0) will change to one having unit
at one of the components, say, to (1, 0, 0, . . . , 0),
and thus will differ from the identities of the agents
of both groups.

Global consequences of individuals ’ cultural
interactions
The aim of the cultural version of the MA model is
to examine the process of socio-cultural segrega-
tion and emergence in city, the inhabitants of
which can vary in their cultural identity according
to high number of traits. To qualify as a new socio-
cultural entity, a group of individuals sharing the
same cultural identity must fulfill simultaneously
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two conditions (Portugali el al., 1997):

At the local level, most of the group members
should be located within culturally uniform

neighborhood;
At the global level, the number of group members
and their spatial segregation have to be suffi-

ciently high.

Our previous study demonstrates three types of
persistent residential dynamics in the city populated
by the agents, whose cultural identity is represented
by quantitative characteristic, continuously varying
on [0, 1] (Benenson and Portugali, 1995). One type
can be termed a "random" city, another a "homo-
geneous" city, in which almost all of the agents
belong to the cultural group of either 0- or 1-agents,
and the third type is characterized by three coexist-

ing segregated groups, whose members have close
to 0-, 1- and 0.5-identities. For the latter case, the

0.5-group is emerging and self-organizing during
the city and agents’ coevolution (Benenson and

Portugali, 1995; Portugali and Benenson, 1997;
Portugali et al., 1997). In the following section,
the phenomenon of multiple and recurrent socio-

cultural emergence is investigated based on newly
introduced multi-dimensional and qualitative indi-

vidual’s cultural code. The three-type typology of
urban residential dynamics can be applied with

a multi-dimensional cultural identity as well, and
the set of parameters entailing the coexisting
segregated groups is used below to investigate the
model. The three questions responded to are: What
are the number and level of segregation of each

emerging (if ever) cultural entity? Are these groups
fixed or do they vanish with time? What is their

life history’? The system behavior is investigated
below for the case of up to a five-dimensional
cultural code.

Presentation oj the urban patterns
A city’s cultural pattern is presented by means of
three kinds of maps (Fig. 4). The first represents a

FIGURE 4 Cultural MA-model: persistent city patterns. (See Color Plate V.)
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distribution of the agents’ cultural identity, with
each identity marked by its own color. This map is
the most detailed of the three, but its method of
presentation inconvenient for K>  2 in view of the
high number and nonlinear ordering of identities.
The second type of map is that of the difference
p(Ch,  C,>  between the identity CA  of agent A,
occupying house H, and some identity chosen
a priori, say, Co  = (0, 0, 0,. . . , 0). This map shows
those effects that do not depend on K;  its dis-
advantage lies in the fact that for several different
identities, CA  can differ equally from the identity
selected for comparison. The third map is that of a
distribution of the cultural cognitive dissonance of
the residents (Portugali et al., 1995) and represents
the domains of the most intensive changes either in
population distribution or in the cultural identity
of the model agents. The fraction of the agents
that want to leave the city, which is defined by the
overall mean value of the cultural dissonance, is
used below as an indicator of its overall instability.
The presented results do not depend on the initial
distribution of the agents in the city.

Model dynamics for low-dimensional cultural
codes (K = 2) The case K= 2 corresponds to our
previous analysis of residential segregation be-
tween a small number of cultural groups (Portugali
et al., 1994). The city dynamics in that case entails a
rapid self-organization of two to four cultural
identities within a few segregated patches. Here,
the boundaries between the homogeneous patches
remain areas of instability, with intensive exchange
of individuals (Fig. 4(a), compare to Portugali
et al., 1994).

Let us skip the intermediate cases of K-  3,4  and
proceed to K-  5.

Model dynamics *for  a high-dimensional cultural
code (K= 5) The number of possible identities
for K = 5 equals 25  = 32. In a way similar to the
case of K = 2, the boundaries between the homo-
geneous domains and the heterogeneous domains,
occupied by the agents of varying identities,
remain areas of instability. The agents located
there either try to leave their houses or change
their cultural code. None of the properties of the
specific cultural identities can be predicted in the

long run, but it is still possible to understand and
predict the following properties of the population
distribution in the model citv:

(I)

(2)

(3)

J

The persistent city structure is characterized by
a mixture of spatially homogeneous and
heterogeneous domains. The former, whose
populations form cultural entities, covers about
half of the city’s area for K = 5 (Fig. 4(b)). The
distribution of cultural differences p(CA,  Co)
between the agents with cultural code CA  and
the “basic” cultural identity Co  = (0, 0, 0, 0,O)  is
self-organizing as well (Fig. 4(b)).
A limited number of cultural entities can exist in
the city simultaneously (Figs. 4(b), 5(a)).
The life-span of a socio-cultural entity is finite;
newly emerging entities replace each other in the
city space. About 20 percent of the entities
persist in the city for not less than 10 iterations
and about 10 percent exist for not less than 25
iterations (Fig. 5(b)).

The global model dynamics can be explained on
the basis of the distribution of cultural differences,
presented in Fig. 4(b). This distribution has two
contradictory characteristics. First, the difference
@‘A,  Co)  increases with the increase in the distance
of agent A from the location of the agents having
cultural code Co.  Second, the multi-dimensionality
and, hence, non-linear ordering of the identities
implies the recurrent emergence of adjacent entities
CA  and CB,  that differ equally and significantly from
Co and between themselves @(CA,  C,>  N  p(Cn,
Co)  N  p(CA,  Cn)). It can be observed, for instance,
at the bottom of Fig. 4(b), where the boundary
between the identities, which are represented in
violet and yellow (first map from the left), is an area
of high dissonance between them (right map), while
both of them differ from Co  (middle map). This
phenomenon implies non-monotonous dependence
of the index of the city’s instability, represented by
the mean fraction of the agents that want to leave
the city, on the number of coexisting entities (Fig. 6).
According to the Fig. 6, with an increase in the
number of entities, the city’s instability first
decreases. With a further increase in the number of
entities, the emerging cultural entities occupy the
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FIGURE 6 City’s instability vs number of entities.

bulk of the territory, while the heterogeneous areas
vanish. In such circumstances contiguity between
contrasting entities is inevitable. The self-organizing
boundaries between them then sharpen and expand
and the city’s instability increases once again
(Fig. 6). In consequence, we can say that urban
instability is limitedfrom below, and that the model
city itself is self-organizing and evolving towards a
critical structure that preserves its internal capacity
to changes.

To conclude, the micro-interactions at the
agents’ and houses’ levels entail recurrent self-
organization of population groups at the macro-
level, according to both economic and cultural
characteristics. The resulting persistent residential
distribution depends on the nature of the character-
istic we are interested. Continuously varying eco-
nomic characteristics induces smooth residential
distributions, which is characterized by low level
of instability and consequently, by slow tempo-
ral changes. Qualitative and multi-dimensional
“cultural code” entails self-organization of the
critical population distribution, which is character-

ized by the preservation of a significantly high level
of instability and, therefore, by the recurrent emer-
gence and disappearance of cultural groups. Con-
cerning the applied aspect, the GIS-based economic
version of the model can be considered as a first step
towards the operational implementation of a MA
simulation approach.

3 BACK TO INTEGRATION, BASED ON
THE HIERARCHY OF MODELS OF
CITY COMPONENTS

Let us compare different model approaches accord-
ing to their spatial and temporal resolutions. The
spatial unit of the ecological model is the entire
city. For the regional approach, a model unit
represents a relatively large urban region. The
spatial unit of the CA model is of intermediate size
and determined by the degree of homogeneity that
can be achieved when partitioning a city’s territory
according to a given classification of land usage.
The spatial unit of the MA model is the smallest,
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defined by dimensions of the separate house or
compact group of houses.

The problem of which time scale fits the given
approach is more complicated. In general, the
model’s time scale is defined by the temporal
resolution of the available parameter estimates. If,
for instance, parameters are estimated for monthly
intervals then, obviously, the model solutions de-
scribe the monthly dynamics of the system. Conse-
quently, the issue of time scale is a problem of the
selection of an appropriate temporal unit for the
estimation of the parameters and the interpretation
of the results. Regarding ecological models, selec-
tion of the time unit is rather arbitrary because we
assume we can obtain a  complete or  almost
complete description of the model behavior for all
possible sets of parameters. The large number of
non-uniformly interacting components of the regio-
nal model make it impossible to obtain general
results regarding the solutions’ behavior. Moreover,
the very concept of regional modeling eventually
combines processes that occur at different time
scales. For example, yearly to decade varying land
uses, monthly to yearly varying inter-city migration
flows, monthly varying employment market or
weekly varying transportation flows are all con-
sidered in the common framework of an Integrated
Urban Model. Spatially, the statistical or adminis-
trative divisions we are usually forced to utilize,
provide a framework for averaging - rather than the
carriers - of the parameters employed in regional
models. As a result, quantitative relations between
the parameters, partially estimated at different
time resolutions or partially substituted by some
“likelihood” values, determine the behavior of the
regional model. This can make sense in the short
term, but becomes pointless if we pretend modeling
a system undergoing qualitative modifications and
bifurcations. To avoid this discrepancy, we can
constrain the model to the processes that occur at
the same time scale only. According to the syner-
getics paradigm, these processes, if hypothesized
properly, are not many; we can, therefore, hope that
the dimensions of the constrained model will be
sufficiently low to enable estimation of the param-

eters and the classification of the solution. The
proper selection of the processes in regards to the
time scale depends greatly on the system’s specifi-
city, and no other confirmation of certain prefer-
ences can be obtained by any means other than
the operational “Do it!” From this point of view, the
results of the CA and MA model approaches are
rather encouraging. The former utilizes land-use
dynamics as a process defined by substitutions
between a limited number of the parcels’ different
states, which occur annually or perhaps rarely. The
latter deals with the residential decisions that people
pose to them more frequently. Both of these
approaches demand a reasonably low number of
parameters and generate self-organizing bifurcative
dynamics - the CA model regarding the urban
infrastructure and the MA model regarding urban
residential distribution. In parallel, these
approaches work with different but “adjacent”
space resolutions. If we interlace the two, we can
argue that the “fast” residential dynamics of the
MA model should account for the outcomes of the
“slower” CA model of land-use dynamics by
functioning as the slow control parameters that
define the location of residential areas, number of
available dwellings, etc. An MA model feeds back
information regarding qualitative changes in social
and cultural structure of city population to the
infrastructure level, since this information can
influence the regulations governing transitions
between land uses. It is an open question as to
whether other levels of the urban hierarchy - in
addition to those defined by land-use and individual
residential behavior - should be considered sepa-
rately. Trends in employment, birth and mortality,
with their characteristic time scales should be
examined in this respect. In general, the develop-
ment of a hierarchical structure of models, each one
dealing with urban processes at specific temporal
and spatial scales, is a necessary step towards
understanding and modeling urban dynamics.
Separate models, each one describing processes
at similar spatial and temporal scales, should
be combined in a way that the variables of the
slower and spatially less-detailed models serve as
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control parameters for those which are faster and
more detailed. Detailed models, in turn, delegate
pertinent information regarding qualitative changes
to the higher hierarchical levels.
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