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Abstract
The	Schelling	model	is	a	simple	agent-based	model	that	demonstrates	how	individuals’	relocation	decisions	can	generate
residential	segregation	in	cities.	Agents	belong	to	one	of	two	groups	and	occupy	cells	of	rectangular	space.	Agents	react	to	the
fraction	of	agents	of	their	own	group	within	the	neighborhood	around	their	cell.	Agents	stay	put	when	this	fraction	is	above	a
given	tolerance	threshold	but	seek	a	new	location	if	the	fraction	is	below	the	threshold.	The	model	is	well-known	for	its	tipping
point	behavior:	an	initially	random	(integrated)	pattern	remains	integrated	when	the	tolerance	threshold	is	below	1/3	but
becomes	segregated	when	the	tolerance	threshold	is	above	1/3.	In	this	paper,	we	demonstrate	that	the	variety	of	the	Schelling
model’s	steady	patterns	is	richer	than	the	segregation–integration	dichotomy	and	contains	patterns	that	consist	of	segregated
patches	of	each	of	the	two	groups,	alongside	areas	where	both	groups	are	spatially	integrated.	We	obtain	such	patterns	by
considering	a	general	version	of	the	model	in	which	the	mechanisms	of	the	agents'	interactions	remain	the	same,	but	the
tolerance	threshold	varies	between	the	agents	of	both	groups.	We	show	that	the	model	produces	patterns	of	mixed	integration
and	segregation	when	the	tolerance	threshold	of	an	essential	fraction	of	agents	is	either	low,	below	1/5,	or	high,	above	2/3.	The
emerging	mixed	patterns	are	relatively	insensitive	to	the	model’s	other	parameters.
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Introduction
1.1 	The	Schelling	model	of	segregation	was	introduced	by	Thomas	Schelling	in	the	late	1960s	(Schelling	1969,	1971,	1974,	1978).

Schelling	devised	the	model	in	order	to	demonstrate	how	individuals'	relocation	decisions	entail	global	segregation.	Schelling
noted	that	his	abstract	model	could	reflect	different	spatial	phenomena,	but	his	main	concern	was	the	residential	segregation	of
blacks	and	whites	in	United	States	cities	(Schelling	1969,	p.	488).	In	this	interpretation,	the	model	consists	of	households	that
make	residential	decisions	based	on	the	ethnic	composition	of	neighborhoods.

1.2 	Using	today's	terminology,	the	Schelling	model	is	an	agent-based	model.	Agents	belong	to	one	of	two	groups	and	are	located	in
the	cells	of	rectangular	space.	A	cell	can	be	either	empty	or	occupied	by	a	single	agent.	Agents	react	to	the	fraction	f	of	friends
(i.e.	agents	of	their	own	group)	in	the	local	neighborhood	of	a	cell.	An	agent	is	satisfied	with	its	location	when	the	fraction	of
friends	in	the	cell's	neighborhood	is	equal	or	above	the	threshold	F,	f ≥ F.	However,	when	the	fraction	of	friends	in	the
neighborhood	is	below	F(f < F),	an	agent	tries	to	relocate	to	an	empty	cell	for	which	the	fraction	of	friends	in	the	neighborhood	is
satisfactory	(f ≥ F).	The	minimum	fraction	of	friends	F	required	by	an	agent	to	be	satisfied	is	known	as	the	tolerance	threshold.

1.3 	A	wide	spectrum	of	formal	representations	of	the	Schelling	mechanism	exhibits	various	aspects	of	a	well-known	tipping	point
behavior:	An	initially	random	pattern	remains,	in	time,	integrated	for	F < Fcritical,	while	it	converges	to	segregation	for	F ≥ Fcritical.
The	tipping	point	Fcritical	is	about	1/3,	indicating	that	a	relatively	weak	individual	tendency	to	segregate	is	sufficient	for	global
segregation.	Based	on	this	result	Schelling	argued	that	residential	segregation	in	cities	could	form	even	when	all	of	the	individuals
are	willing	to	live	within	integrated	neighborhoods,	and	no	ethnic	discriminatory	mechanism	or	economically-induced	segregation
exist	(Schelling	1971).
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1.4 	Schelling's	mechanism	of	residential	relocation	constitutes	the	core	of	comprehensive	models	of	real-world	residential	dynamics
(Ellis	et	al.	2012).	It	is	thus	important	to	investigate	whether	the	segregation-integration	dichotomy	is	the	only	possible	outcome	of
the	Schelling	model.	In	this	paper,	we	demonstrate	that	the	model's	repertoire	is	not	limited	to	merely	integration	(Figure	1a)	or
segregation	(Figure	1b),	but	also	includes	intermediate	patterns	that	simultaneously	contain	segregated	and	integrated	parts
(Figure	1c).	Below,	we	refer	to	these	patterns	that	contain	segregated	patches	for	each	population	group	as	well	as	patches
where	both	groups	coexist	as	mixed	patterns.

Figure	1.	Steady	residential	patterns	of	blue	and	green	agents.	The	Ic	and	C	indices	are	introduced	in	Section	6	below.

1.5 	Our	research	provides	an	extension	of	the	Schelling	model	that	accounts	for	the	heterogeneity	that	exists	in	real	world
populations.	As	we	demonstrate,	mixed	patterns	emerge	in	the	Schelling	model	when	agents'	tolerance	thresholds	vary	among
the	members	of	the	same	group.	Namely,	when	an	essential	fraction	of	the	agents	of	both	groups	has	either	a	low	tolerance
threshold	(tolerant	agents)	or	a	high	tolerance	threshold	(intolerant	agents).	We	consider	various	distributions	of	tolerance
threshold	and	reveal	the	conditions	for	the	emergence	of	mixed	patterns.

1.6 	The	paper	has	the	following	structure:	Section	2	demonstrates	the	relevance	of	mixed	patterns	to	the	spatial	ethnic	patterns	of
cities.	Section	3	presents	a	brief	review	of	the	Schelling	model	studies.	Section	4	presents	the	model	formally	and	Section	5
describes	the	tolerance	distributions	used	in	the	study.	The	indices	that	are	exploited	for	characterizing	residential	patterns	are
introduced	in	Section	6,	followed	by	the	results	in	Section	7.	We	summarize	our	findings	in	Section	8.

Urban	patterns	of	ethnicity
2.1 	Our	interest	in	mixed	patterns	is	not	purely	theoretical.	Besides	the	intent	of	broadening	our	understanding	of	the	Schelling

model	behavior,	we	are	motivated	by	the	ethnic	patterns	in	real-world	cities	that	are	not	purely	integrated	and	segregated,	but
contain	both	integrated	and	segregated	neighborhoods.	The	latter,	according	to	the	2010	US	census,	is	characteristic	for	many
US	cities	where,	despite	some	decline	since	1970s	(Glaeser	&	Vigdor	2012),	ethnic	segregation	is	still	prevalent	(Logan	&	Stults
2011).	A	visual	assessment	of	the	ethnic	residential	patterns	of	cities	uncovers	intricate	patterns	of	segregation	and	integration,
which	are	similar	to	the	aforementioned	mixed	patterns.	Maps	in	Figure	2	present	examples	of	Chicago	and	New	York	and	show
fractions	of	Black,	Hispanic,	White,	and	Asian	populations,	alongside	the	Shannon	entropy	index	(Arndt	2004)	calculated	on

these	fractions[1].	To	recall,	a	low	value	of	the	Shannon	entropy	manifests	homogeneity	of	the	area,	whereas	a	high	value	is
charactersitic	of	an	area	where	several	population	groups	coexist.
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Figure	2.	The	fraction	of	Black,	Hispanic,	White,	and	Asian	adults	within	the	census	blocks	in	2010,	and	the	Shannon	entropy
index	for	Chicago	and	New	York.	The	legend	is	valid	for	both	population	fractions	and	the	Shannon	entropy	index.

2.2 	The	Chicago	residential	pattern	contains	large	segregated	areas	of	Black,	Hispanic,	and	White	populations,	and	a	small
segregated	area	of	Asian	population	(Figure	2a).	However,	according	to	the	entropy	map	that	depicts	areas	populated	by	a
variety	of	ethnic	groups,	not	all	areas	are	segregated.	These	include	Rogers	Park,	West	Ridge,	Edgewater,	and	Uptown	in	the
north	(marked	A),	Bridgeport	(marked	B)	and	Hyde	Park	(marked	C).

2.3 	New	York	is	less	segregated	than	Chicago	(Figure	2b).	Examples	of	ethnically	diverse	neighborhoods	in	New	York	are
Richmond	Hill,	Woodhaven,	and	Ozone	Park	in	Queens	(marked	D);	while	East	Flatbush	and	Remsen	Village	in	Brooklyn
(marked	E)	are	segregated.	Ethnic	patterns	that	are	composed	of	mixed	integration	and	segregation	exist	in	many	other	US	and
Israeli	cities	(Hatna	&	Benenson	2012).

The	Schelling	model

3.1.	Schelling's	original	studies

3.1 	Schelling	introduced	the	initial	version	of	the	model	in	1969	(Schelling	1969).	He	referred	to	it	as	linear	because	it	considered	a
one-dimensional	array	of	resident	locations.	All	array	cells	are	populated	by	"stars"	("+")	and	"zeros"	("0")	representing	agents	of
two	groups.	An	agent	is	dissatisfied	with	its	location	when	the	fraction	of	friends	in	the	eight	nearest	cells,	four	at	each	side,	is
below	the	tolerance	threshold.	The	dissatisfied	agent	relocates	to	the	nearest	position	where	the	fraction	of	friends	is	above	the
threshold.	Because	all	cells	are	occupied,	a	migrating	agent	is	inserted	into	its	new	position	and	other	agents	are	shifted	aside.
The	model	is	updated	at	discrete	time	steps,	one	agent	at	a	time,	in	a	predefined	order.	With	the	linear	model,	Schelling
illustrated	that	for	F = 0.5,	an	initially	random	pattern	converges	to	a	segregated	pattern	that	consists	of	long	sequence	of	stars
and	zeroes.

3.2 	In	a	later	publication	Schelling	(1971)	presented	a	two-dimensional	version	of	the	model,	where	agents	are	not	shifted	sideways
in	order	to	make	room	for	relocating	agents.	Instead,	Schelling	introduced	empty	cells	as	potential	destinations	for	relocating
agents.	In	a	2D	version,	agents	dissatisfied	with	their	local	3-by-3	neighborhood	move	to	the	nearest	empty	cell	that	has	a
sufficient	fraction	of	friends.	Here,	Schelling	revealed	for	the	first	time	that	the	value	of	Fcritical	that	separates	segregation	and
integration	is	essentially	below	the	intuitive	value	of	1/2	and	close	to	1/3.	That	is,	for	F < 1 /3,	an	initially	random	residential	pattern
remains	random-like;	while	for	F ≥ 1 /3,	the	pattern	converges	to	a	state	of	global	segregation	(Schelling	1971,	p158).

3.2.	Later	studies

3.3 	The	body	of	literature	on	the	Schelling	model	accumulated	since	the	1970s	is	far	too	large	and	fragmented	to	allow	for	a
comprehensive	review	within	this	paper.	We	thus	consider	several	relevant	publications	only.

3.4 	Benenson	and	Hatna	(2011)	were	the	first	to	reveal	that	the	Schelling	model	can	generate	patterns	where	integration	and
segregation	co-exist.	More	specifically,	they	demonstrated	that	when	two	groups	are	of	different	sizes	and	F < Fcritical,	the	model
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produces	a	segregated	patch	for	the	majority	group	while	the	rest	of	the	area	is	occupied	by	both	groups.	In	a	later	study,	Hatna
and	Benenson	(2012)	showed	that	the	model	generates	similar	patterns	when	the	tolerance	thresholds	are	group-specific	and	the
tolerance	threshold	of	one	group	is	between	Fcritical,	and	0.5,	while	the	tolerance	threshold	of	the	second	group	is	below	Fcritical.

3.5 	Xie	and	Zihaou	(2012)	were	the	first	to	study	a	Schelling	model	where	each	agent	holds	a	personal	preference	concerning	the
ethnic	composition	of	neighborhoods.	They	based	the	agents'	tolerance	regarding	neighborhood	composition	on	a	US	survey	that
revealed	large	heterogeneity	in	whites'	tolerance	for	black	neighbors	and	extended	the	model	of	Bruch	and	Mare	(2006,	2009)
where	all	white	and	black	agents	have	the	same	utility	functions.	The	Xie	and	Zihaou	(2012)	model	generates	a	lower	level	of
racial	residential	segregation	when	compared	to	the	case	where	all	agents	have	the	same	racial	tolerance,	but	the	authors	did	not
indicate	whether	the	model	produces	patterns	of	mixed	integration	and	segregation.

3.6 	Vinkovic	and	Kirman	(2006)	provide	a	general	insight	into	the	relation	between	rules	and	patterns	by	considering	a	continuous
analog	of	the	Schelling	model.	They	distinguish	between	the	relocation	rules	that	enable	relocation	to	a	better	location	only	and
the	rules	that	enable	relocation	to	a	cell	of	the	same	utility.	The	rules	of	the	first	type	generate	patterns	that	stall	with	an	essential
fraction	of	discontent	agents	who	are	unable	to	find	a	better	location.	The	rules	of	the	second	type	generate	patterns	that	do	not
stall,	even	when	all	agents	are	satisfied.	In	time,	patterns	in	this	model	converge	to	stochastic	equilibrium	in	which	their	statistical
characteristics,	such	as	level	of	segregation,	slightly	fluctuate	around	the	long-term	average.

3.7 	Vinkovic	and	Kirman	(2006)	demonstrate	that	the	patterns	are	very	sensitive	to	parameters	when	the	rules	allow	for	relocation	to
better	cells	only.	For	example,	the	size	of	the	homogeneous	clusters	depends	on	the	fraction	of	unoccupied	cells.	In	contrast,
when	the	agents	are	able	to	relocate	to	cells	of	the	same	utility,	the	model	patterns	are	far	less	sensitive	to	the	model	settings.
For	example,	all	steady	segregated	patterns	consist	of	two	clusters,	one	for	each	group.

3.8 	In	this	study,	based	on	Vinkovic	and	Kirman's	(2006)	results,	we	set	rules	allowing	an	agent	to	relocate	between	cells	of	the
same	utility.	We	consider	this	feature	as	a	reflection	of	the	reasons	for	human	migration	that	are	unrelated	to	the	ethnic
composition	of	the	neighborhood.	At	the	same	time,	we	restrict	this	kind	of	migration	in	the	model	to	satisfied	agents;	dissatisfied
agents	migrate	to	better	locations	only.

Model	rules
4.1 	The	rules	of	the	model	that	are	used	in	this	study	follow	Hatna	and	Benenson	(2012).	Urban	space	is	represented	by	a	N×N

array	of	cells	on	a	torus.	A	cell	is	either	vacant	or	populated	by	a	single	agent.	We	denote	an	agent	as	a,	a	cell	as	c,	and	the
Moore	n × n	neighborhood	of	c,	excluding	c	itself,	as	U(c).	Each	agent	a	belongs	to	one	of	two	color	groups:	blue	or	green,	and
has	a	personal	tolerance	threshold	Fa.	An	agent	considers	other	agents	of	the	same	color	as	belonging	to	its	own	group;	we	refer
to	them	as	friends.	Agent	a	is	always	aware	of	the	fraction	of	friends	fa(c),	excluding	itself,	among	the	agents	located	in	U(c);	this
estimate	ignores	vacant	cells	of	U(c).

4.2 	Agent	a	evaluates	the	utility	ua(c)	of	a	cell	c	within	a	non-empty	neighborhood	according	to	the	fraction	of	friends	within	the	U(c)
and	a's	tolerance	threshold	Fa:

ua(c) = min {fa(c), Fa}/Fa if	Fa > 0

ua(c) = 1 if	Fa = 0
(1)

The	utility	of	a	cell	in	an	empty	neighborhood	is	defined	as	0.	According	to	(1),	the	utility	varies	on	[0,	1]	(Figure	3).

4.3 	The	agent	is	satisfied	with	a	cell	c	if	ua(c) = 1	that	is,	the	fraction	of	friends	within	neighborhood	U(c)	is	Fa	or	higher.	That	is,	in
the	case	of	fa(c) < Fa	the	more	friends	the	better,	while	for	fa(c) ≥ Fa	the	number	of	friends	is	not	important.
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Figure	3.	An	example	of	the	utility	function	for	an	agent	with	a	personal	tolerance	threshold	Fa = 0.5.	This	agent	is	satisfied	when
50%	or	more	of	its	neighbors	are	of	the	same	color.

4.4 	Time	in	the	model	is	discrete.	At	every	time	step,	each	agent	makes	relocation	decision	by	taking	the	following	steps:

Step	1:	Agent	a	located	in	cell	h	decides	whether	to	relocate:

a	Generates	a	random	number	p,	uniformly	distributed	on	[0, 1).
If	ua(h) < 1	or	(ua(h) = 1	and	p < m),	then	a	tries	to	relocate,	otherwise	a	decides	to	stay	at	h.	That	is,	the	dissatisfied
agent	constantly	tries	to	relocate,	while	the	satisfied	agent	tries	to	relocate	with	probability	m.

Step	2:	If	agent	a	decides	to	relocate,	then	it	searches	for	a	new	location.	The	agent	compares	the	utility	of	its	current	cell	to	a	set
of	unoccupied	cells	and	decides	whether	to	move:

a	Randomly	selects	w	unoccupied	cells	from	all	cells	that	are	unoccupied	at	that	moment,	Va.
a	Estimates	utility	ua(v)	of	each	vacant	cell	v ∈ Va	and	selects	the	one	with	the	highest	utility	ua(vbest).	If	there	are	several
equally	best	vacancies	in	Va,	a	chooses	one	of	them	randomly.
a	Moves	to	vbest	if	either	of	the	following	two	conditions	are	met	(otherwise	it	stays	at	h).
ua(h) > 1	and	ua(vbest) > ua(h),	i.e.,	a	is	dissatisfied	with	its	current	cell	h	and	vbest	is	better	than	h.
ua(h) = 1	and	ua(vbest = 1,	i.e.,	a	is	satisfied	with	h	but	moves	to	vbest	which	is	also	satisfactory.

4.5 	At	every	time	step,	each	agent	performs	the	above	sequence	of	decisions	once.	Following	Schelling's	original	approach,	we	use
asynchronous	updating	(Cornforth	et	al.	2005)	and	allow	each	agent	to	make	its	decision	based	on	the	instantaneous	state	of	the
pattern.	Agents	are	processed	in	random	order,	which	is	established	anew	at	each	time	step.

4.6 	Our	model	rules	differ	from	Schelling's	description	in	the	following	respects:

A	satisfied	agent	tries	to	relocate	with	the	nonzero	probability	m.	Schelling's	assumption	is	m = 0.
The	distance	between	cells	has	no	effect	on	agents'	relocation.	In	Schelling's	model,	agents	move	to	the	closest
satisfactory	position.
Agents	can	move	from	one	unsatisfactory	cell	to	another	if	the	utility	of	the	new	location	is	higher	than	that	of	the	previous

one.	In	Schelling's	description,	agents	only	move	to	satisfactory	cells[2].

Model	Investigation

Tolerance	thresholds	of	agents

5.1 	We	explore	different	distributions	of	agents'	tolerance	thresholds,	but	limit	our	investigation	to	the	symmetric	case	of	identical
distribution	within	each	color	group.	We	start	with	the	simple	case	where	all	agents	share	the	same	tolerance	threshold	and	then
examine	tolerance	distributions	of	two	kinds:

1.	 Dichotomous:	Blue	and	green	populations	consist	of	two	subgroups:	The	tolerance	threshold	is	F1	for	a	fraction	α	of
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agents	and	F2	for	the	rest.	This	leads	to	four	groups	of	agents:	blue	with	F1	tolerance,	blue	with	F2	tolerance,	green	with	
F1	tolerance	and	green	F2	tolerance.

2.	 Beta-binomial:	This	distribution	is	sufficiently	flexible	for	generating	a	variety	of	tolerance	threshold	distributions	by
altering	the	two	shape	parameters.

5.2 	Besides	distribution	of	tolerance,	we	explore	the	influence	of	the	population	ratio	of	blue	and	green	agents	on	the	model	pattern.
We	characterize	this	ratio	by	the	fraction	of	blue	agents	β;	β = 0.1,	for	instance,	indicates	that	the	population	consists	of	10%	blue
and	90%	green	agents.	A	population	with	an	equal	number	of	blue	and	green	agents	is	characterized	by	β = 0.5.

5.3 	We	use	a	5 × 5	Moore	neighborhood	which	results	in	181	unique	fractions	of	friends	in	the	neighborhood[3].	However,	we
investigate	model	patterns	as	dependent	on	the	25	discrete	values	of	Fa	only,	namely	of	Fa = 0 /24, 1 /24, …, 24/24	that
characterize	fully	occupied	neighborhoods.	We	limit	our	study	to	this	set	of	the	Fa-values	because	we	are	interested	in	residential
patterns	characteristic	of	an	overall	density	of	agents	close	to	100%.	These	selected	values	of	Fa	are	sufficient	for	an	adequate
portrait	of	the	model	behavior	in	the	case	of	high	population	density.	We	use	the	full	set	of	181	values	in	section	7.1.2	to	estimate
model	behavior	when	the	tolerance	threshold	is	close	to	the	tipping	point.

General	settings

5.4 	Unless	otherwise	stated,	we	use	the	following	settings	in	all	numeric	experiments:

Grid	dimensions:	50 × 50	cells.
98%	of	the	grid	is	occupied,	that	is,	50	of	2500	cells	are	vacant.
1:1	ratio	of	blue	and	green	agents	(β = 0.5).
Agent	evaluates	w = 30	unoccupied	cells	per	time	step	when	considering	relocation.
Probability	of	relocation	by	a	satisfied	agent	m = 0.01.
Initial	agent	residential	pattern	is	random.

Evaluation	of	the	model	outcomes
6.1 	We	estimate	the	long-term	behavior	of	the	model	by	running	it	for	50,000	time	steps.	For	experiments	presented	in	this	study,

the	model	patterns	converge	during	this	time	interval	to	a	quasi-stable	state	in	which	their	statistical	properties	are	stable	and
independent	of	the	initial	residential	pattern.

6.2 	Note	that	the	model's	patterns	can	stall	in	a	state	in	which	some	of	the	agents	are	dissatisfied	with	their	location	but	the	number
of	possible	relocation	options	is	zero	for	all	agents.	For	the	settings	used	in	this	study	(section	5.2)	and	a	homogeneous	tolerance
threshold	F	for	all	agents,	the	patterns	stall	at	a	highly	segregated	configuration	when	F ≥ 14/24.	As	we	will	see	below,	these
situations	are	of	marginal	interest	for	our	study.

6.3 	The	model	produces	two	residential	patterns:	by	color	(i.e.,	blue	and	green	agents)	and	by	agents'	tolerance	thresholds.	To
describe	these	patterns,	we	exploit	three	measures	proposed	in	Hatna	and	Benenson	(2012):

Index	of	color	(IC)	and	tolerance	(IT)	segregation

6.4 	The	level	of	segregation	of	the	color	and	tolerance	patterns	is	measured	by	the	Moran's	I	index	of	spatial	association	(Anselin
1995).	We	denote	IC	as	the	index	for	color	and	IT	as	the	index	for	tolerance	segregation.	For	random	(integrated)	patterns,	I	is

close	to	zero	(Figure	1a),	while	for	fully	segregated	patterns,	I	is	close	to	1	(Figure	1b)[4].	An	intermediate	value	of	IC	implies	a
moderate	level	of	color	segregation,	but	it	does	not	necessarily	indicate	the	presence	of	a	mixed	pattern.	In	order	overcome	this
limitation	of	IC,	we	introduce	the	C	index.

Identifying	mixed	patterns	(C	index)

6.5 	We	employ	the	C	index	to	identify	mixed	patterns.	This	index	evaluates	how	closely	a	color	pattern	resembles	a	pattern	with
three	equal	sized	green,	blue,	and	integrated	regions,	as	the	one	shown	in	Figure	1c.	To	estimate	C,	the	regions	of	(1)	pure	blue,
(2)	pure	green,	and	(3)	integration,	and	the	boundaries	between	them	are	recognized	(see	Hatna	&	Benenson	2012	for	details)
(Figure	4).	Then	C	is	estimated	as	the	fraction	of	the	smallest	of	three	regions	relative	to	the	size	of	the	entire	grid.	If	one	of	three
regions	is	not	present	in	the	pattern	then	the	value	of	C = 0.

6.6 	Figure	4	depicts	the	partition	of	the	mixed	pattern	shown	in	Figure	1c	into	the	three	regions.	These	regions	are	of	similar	size,
each	taking	up	about	21%	of	the	total	area	and	the	rest	of	the	area	is	taken	by	the	boundary.	That	is,	C = 0.21.	C	is	zero	for	the
integrated	and	segregated	patterns	in	Figures	1a	and	1b,	as	they	contain	only	two	of	three	possible	regions.	Below,	the	values	of
all	model	indices	are	averaged	over	30	model	runs	with	identical	values	of	parameters.
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Figure	4.	The	partition	of	the	mixed	pattern	shown	in	Figure	1c	into	blue,	green,	and	integrated	regions,	and	a	boundary.

Results
7.1 	We	present	the	results	in	four	sections:	In	Section	7.1,	we	describe	the	simple	case	where	all	agents	share	the	same	tolerance

threshold.	In	section	7.2,	we	introduce	variability	by	considering	dichotomous	tolerance	thresholds	in	order	to	produce	mixed
patterns.	In	Section	7.3,	we	explore	the	sensitivity	of	the	mixed	patterns	to	various	parameters,	and	in	Section	7.4,	we	explore
cases	where	the	thresholds	are	distributed	across	the	entire	tolerance	range	using	the	Beta-binomial	family	of	distributions.	Table
1	presents	a	summary	of	all	investigated	cases.

Table	1:	A	summary	of	investigated	cases,	by	sub-sections

Section Investigated	case
7.1 All	agents	share	common	tolerance	threshold	F
7.1.1 Model	dynamics	in	the	case	of	zero	probability	m	of	the	random	relocation	of	satisfied	agents,	

m = 0

7.1.2 The	dependence	of	the	tipping	point	on	the	probability	m	of	random	relocation	of	satisfied
agents	in	the	case	of	m > 0

7.1.3 Dependence	of	the	time	of	convergence	to	a	steady	pattern	on	the	tolerance	threshold	F	for
the	value	of	m = 0.01	(that	is	chosen	for	further	model	studies)

7.1.4 Details	of	patterns	dynamics	for	the	values	of	F	near	and	essentially	above	the	tipping	point

7.2 Emergence	of	mixed	patterns	when	half	of	the	agents	of	each	color	has	tolerance	threshold	
F1,	while	the	other	half	has	tolerance	threshold	F2

7.2.1 Agents	of	one	subgroup	are	indifferent	to	agents	of	the	other	group	-	F1 = 0,	tolerance
threshold	F2	of	the	agents	of	the	second	sub-group	varies

7.2.2 Tolerance	threshold	F1	of	the	agents	of	one	subgroup	is	below	the	tipping	point	-	F1 = 3 /24,
tolerance	threshold	of	the	agents	of	the	second	sub-group	F2	–	varies

7.2.3 Tolerance	threshold	F1	of	the	agents	of	one	subgroup	is	near	the	tipping	point	-	F1 = 5 /24,
tolerance	threshold	of	the	agents	of	the	second	sub-group	F2	–	varies

7.2.4 Tolerance	threshold	F1	of	the	agents	of	one	subgroup	is	above	the	tipping	point	-	F1 = 7 /24,
tolerance	threshold	of	the	agents	of	the	second	sub-group	F2	–	varies

7.2.5 Complete	description	of	the	model	patterns'	characteristics	as	dependent	on	F1	and	F2
7.2.6 Detailed	study	of	the	mixed	pattern	dynamics	for	the	representative	case	of	F1 = 3 /24	and	

F2 = 20/24

7.3 Sensitivity	of	the	steady	pattern	properties	to	the	model	parameters	when	the	tolerance
threshold	is	dichotomous

7.3.1 Sensitivity	to	the	fraction	a	of	F1	agents

7.3.2 Sensitivity	to	the	fraction	β	of	blue	agents
7.3.3 Sensitivity	to	the	probability	m	of	relocation	of	satisfied	agents
7.3.4 Sensitivity	to	the	neighborhood's	size

7.4 Emergence	of	mixed	patterns	when	the	population	distribution	of	the	tolerance	threshold	is
Beta-binomial

7.4.1 Study	of	five	qualitatively	different	beta-binomial	tolerance	distributions:	positively	skewed,
symmetric,	uniform,	and	two	U-shaped

7.4.2 Complete	description	of	the	steady	model	pattern	for	Beta	binomial	distribution	of	tolerance
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threshold

All	agents	share	the	same	tolerance	threshold	F

7.2 	The	investigated	version	of	the	model	incorporates	a	few	features	that	were	not	specified	in	or	are	different	from	the	features	of
Schelling's	original	model	as	presented	in	Section	4.	The	most	important	of	these	is	the	ability	of	satisfied	agents	to	relocate.	To
provide	a	background,	we	investigate	a	basic	Schelling	model	in	which	all	agents	have	the	same	tolerance	threshold	F	and
demonstrate	that	the	tipping	point	behavior	of	our	version	of	the	model	is	the	same	as	that	of	the	original	one.	Specifically,	we
demonstrate	the	dependence	of	the	model's	patterns	on	the	probability	of	relocation	by	satisfied	agents	(m),	characterize	the	time
it	takes	for	the	patterns	to	segregate	as	dependent	on	F,	and	demonstrate	how	patterns	converge,	in	time,	to	segregation.

m = 0	–	Satisfied	agents	do	not	move

7.3 	For	m = 0,	the	steady	pattern	is	sensitive	to	the	initial	one.	If	the	initial	pattern	is	fully	segregated,	then	it	remains	unchanged	for
any	value	of	F.	If	the	initial	pattern	is	random	(i.e.,	fully	integrated),	then	it	remains	random	for	F ≤ 7 /24	but	converges	to
segregation	for	F ≥ 9 /24.	For	the	intermediate	case	of	F = 8 /24,	an	initially	random	patterns	stalls	after	some	10	time	steps	in	a
partly	segregated	state,	in	which	dissatisfied	agents	are	not	able	to	improve	their	location;	this	stalled	residential	pattern
essentially	depends	on	the	details	of	initial	pattern.

The	dependence	of	the	tipping	point	on	m	(m > 0)

7.4 	For	m > 0,	the	model	exhibits	a	clear	tipping	point	behavior	with	the	tipping	value	depending	on	m.	In	order	to	gain	a	detailed
description	of	this	dependency,	we	consider	all	181	possible	values	of	F	(Figure	5).

Figure	5.	The	model's	steady	patterns	as	dependent	on	the	tolerance	threshold	F	and	the	rate	m	of	relocation	attempts	by
satisfied	agents.	The	domain	of	the	integrated	patterns	is	marked	by	blue,	while	the	domain	of	segregated	patterns	by	grey.

7.5 	As	can	be	seen	from	Figure	5,	the	value	of	F	at	the	tipping	point	grows	with	the	increase	of	m.	For	m = 0.01	the	transition	between
integration	and	segregation	occurs	at	Fcritical = 4 /22 ≈ 0.18,	for	m ∈ [0.06, 0.31]	at	Fcritical = 4 /19 ≈ 0.21,	for	m ∈ [0.33, 0.57]	at	
4 /18 ≈ 0.22,	for	m ∈ [0.60, 0.68],	at	4 /17 ≈ 0.23	and	for	m ∈ [0.69, 1.00]	at	Fcritical = 6 /23 ≈ 0.26.	The	reason	for	the	increase	of	

http://jasss.soc.surrey.ac.uk/18/4/15.html 8 31/10/2015



Fcritical	with	the	increase	in	m	is	the	growing	influence	of	random	migration	on	the	initial	clustering	of	agents[5].

7.6 	In	what	follows,	we	investigate	the	Schelling	model	for	a	low	value	of	m = 0.01	and	limit	our	study	to	25	values	of	
F = 0 /24, 1 /24, …, 24/24.	For	this	m,	F = 5 /24 ≈ 0.20833	is	the	minimal	tolerance	that	is	above	the	tipping	point	of	Fcritical = 4 /22.
We	refer	to	this	value	as	near	the	tipping	point	value.

Dependence	of	the	time	of	convergence	to	segregation	on	F

7.7 	For	m = 0.01,	an	initially	random	pattern	converges	to	segregation	for	F ≥ 5 /24,	and	the	time	of	convergence	depends	on	F
(Figure	6).	As	should	be	expected,	the	average	convergence	time	and	the	variation	of	this	time	are	the	highest	for	the	near	tipping
point	value	of	F = 5 /24.	For	this	F	it	takes,	on	average,	about	10,000	time	steps	and	varies,	in	100	experimental	runs	performed
for	the	same	values	of	parameters,	between	5,000	and	25,000	time	steps.	Then,	with	the	growth	of	F,	the	average	convergence
time	and	the	variation	of	this	time	sharply	decrease	(Figure	6),	and	for	high	tolerance	values,	such	as	F ≥ 12/24,	it	always	takes
four	time	steps	only.

Figure	6.	The	average	and	the	variation	of	the	number	of	time	steps	required	to	reach	a	segregated	pattern	(IC ≥ 0.8)	as
dependent	on	F,	based	on	100	runs.	The	value	of	m = 0.01,	blue	vertical	lines	represent	95%	confidence	intervals.

Details	of	patterns'	dynamics

7.8 	Figure	7	shows	the	dynamics	of	the	color	segregation	(IC	index),	of	the	level	of	mixing	C,	and	the	steady	model	patterns	for	
F = 5 /24	and	F = 7 /24.	As	can	be	seen	from	Figure	7b,	the	patches	of	green	and	blue	agents	emerge	and	grow	until	merging	into
two	large	patches,	one	for	each	group.	Further	dynamics	result	in	minimizing	the	length	of	the	boundary	between	these	two
patches.	Figure	7	illustrates	that	the	process	of	convergence	is	slower	for	F = 5 /24	as	compared	to	F = 7 /24.
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Figure	7.	Model	runs	for	F = 5 /24	and	F = 7 /24:	(a)	dynamics	of	IC	and	C,	the	inset	graph	depicts	the	first	300	time	steps;	(b)
color	patterns	at	different	time	steps.

7.9 	It	is	worth	noting	that	during	the	growth	of	the	blue	and	green	patches,	the	patterns	still	contain	integrated	areas.	The	patterns
are	thus	mixed,	both	visually	and	according	to	the	value	of	C.	Integrated	areas	dissolve	in	time	as	the	blue	and	green	agents
migrate	and	segregate	throughout	the	entire	pattern.

7.2.	Two	sub-groups	characterized	by	different	tolerance	thresholds

7.10 	As	demonstrated	above,	the	residential	pattern	of	agents	whose	tolerance	threshold	is	identical,	either	remains	integrated	forever
or	converges	to	a	segregated	pattern.	Variability	of	the	tolerance	thresholds	alters	this	basic	result	and	brings	in	mixed	patterns.
We	start	with	the	settings	in	which	each	color	group	is	composed	of	two	equal	sized	subgroups:	half	of	blue	and	green	agents
have	a	tolerance	threshold	F1,	while	the	other	half	has	a	tolerance	threshold	F2.	According	to	our	definitions	of	the	model
parameters	in	Section	5.1,	these	settings	correspond	to	the	case	of	a = 0.5.	We	keep	the	number	of	blue	and	green	agents	equal
as	well	(β = 0.5).

7.11 	In	what	follows,	we	fix	four	values	of	the	tolerance	threshold	of	the	first	sub-group:

a.	 Zero,	F1 = 0 /24,
b.	 Below	the	tipping	point	F1 = 3 /24,
c.	 Near	tipping	point	F1 = 5 /24,
d.	 Above	the	tipping	point	F1 = 7 /24.

7.12 	For	each	of	these	values,	we	study	the	details	of	model	dynamics	as	dependent	on	F2.	Then	we	present	the	general	properties
of	the	model	patterns	for	all	possible	(F1, F2)	pairs	and	conclude	the	section	by	demonstrating	the	temporal	development	of	the
mixed	patterns.	To	recall,	given	a	set	of	model	parameters	the	simulation	is	repeated	30	times	and	all	pattern	characteristics	are
averaged	over	these	30	runs.	The	patterns	at	t = 50,000	are	considered	as	steady.
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F1 = 0,	F2	varies

7.13 	When	F1 = 0 /24,	half	of	the	agents	of	each	color	are	fully	tolerant	and	are	thus	satisfied	within	any	neighborhood	and	only
attempt	to	relocate	for	random	reasons,	i.e.,	at	a	rate	m.	Model	patterns	still	depend	on	the	tolerance	threshold	F2	of	the	other	half
of	the	agent	population.	Figure	8a	presents	the	dependence	of	three	measures	–	IC	of	segregation	by	color,	measure	IT	of
segregation	by	tolerance	threshold,	and	measure	C	of	pattern	mixing	on	F2.	For	F2 < 5 /24,	the	pattern	is	integrated:	starting	at	
F2 = 5 /24,	the	value	of	IC	grows	linearly	with	F2	and	stabilizes	at	F2 = 18/24	at	a	level	of	0.46.	Segregation	by	tolerance,
characterized	by	the	value	of	IT,	remains	zero	for	all	F2 < 12/24.	For	larger	values	of	F2,	IT	grows	with	the	growth	of	F2,	stabilizing
at	the	value	of	0.7	at	F2 = 18/24.	According	to	the	C-measure,	for	F2 ≥ 16/24,	the	color	pattern	is	mixed,	see	steady	patterns	for	
F2 = 17/24	and	F2 = 20/24	in	Figure	8b.

Figure	8.	The	case	of	F1 = 0 /24	and	varying	F2:	(a)	Moran's	I	for	agents'	color	(IC),	tolerance	(IT),	and	the	C-index.	(b)	Color	and
tolerance	patterns	at	t = 50,000.

7.14 	According	to	Figure	8,	mixed	patterns	appear	for	the	values	of	F2	for	which	the	tolerance	pattern	is	segregated.	In	this	case,	blue
and	green	patches	consist	of	intolerant	F2-agents,	while	integrated	areas	consist	of	completely	tolerant	F1-agents.

7.15 	It	is	important	to	note	the	importance	of	the	value	of	F2 = 0.5	in	the	emergence	of	a	mixed	pattern.	Indeed,	for	F2 ≤ 12/24,	the	F2
agents	who	reside	within	the	integrated	patch	of	their	own	color	can	still	be	located	at	the	boundary	of	the	patch	(Figure	8b,
middle	column).	The	pattern	of	tolerance	remains	thus	integrated.	However,	for	F2 > 12/24,	F2-agents	cannot	stay	at	the
boundary	of	the	color	patch	and	must	relocate	into	the	inner	part	of	the	patch.	Thus	the	boundaries	of	the	color	patches	are
occupied	by	the	F1-agents,	and	the	pattern	is	segregated	not	only	by	color,	but	also	by	tolerance.

F1 = 3/24,	F2	varies

7.16 	When	the	F1-agents	react,	even	weakly,	to	their	neighbors	the	dependence	of	the	persistent	pattern	on	F2	is	different	from	the
case	of	F1 = 0	(Figure	9).	For	F2 ≤ 6 /24	(and	not	5/24,	as	above),	the	color	pattern	is	integrated.	Starting	from	F2 = 7 /24,	the	level
of	color	segregation	(IC)	gradually	increases	with	the	increase	in	F2	until	reaching	a	maximum	of	0.7	at	F2 = 12/24.	For	this	F2,
the	steady	pattern	consists	of	two	segregated	patches	and	only	the	boundary	between	the	patches	is	integrated	(Figure	9b,
middle	column).
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Figure	9.	The	case	of	F1 = 3 /24	for	varying	F2:	(a)	Moran's	I	for	agents'	color	(IC),	tolerance	(IT),	and	the	C-index.	(b)	The
patterns	of	agents'	color	and	tolerance	at	t = 50,000.

7.17 	The	level	of	tolerance	segregation	IT	is	non-zero	for	F2 ≥ 9 /24,	since	F1	agents	concentrate	at	the	boundaries	of	the	green	and
blue	patches	(as	in	Figure	9b,	middle	column	of	F2 = 12/24).	Starting	from	F2 = 13/24,	the	value	of	IC	decreases	while	the	value	of
IT	continues	to	increase,	indicating	that	the	segregated	pattern	is	replaced	by	a	mixed	one.	All	three	indices	stabilize	at	F2 = 16/24
,	and	the	value	of	C ∼ 0.15	indicates	that	the	patterns	are	mixed	(Figure	9b).

7.18 	Note	that	within	the	interval	8 /24 ≤ F2 ≤ 15/24,	the	model	patterns	are	mixed,	albeit	the	area	of	integration	is	smaller	and	the	value
of	C	varies	between	0.05	and	0.1.	The	level	of	segregation	by	tolerance	for	these	values	of	F2	is	very	low.	We	will	show	in
Section	7.2.5	that	this	non-monotonous	dependency	is	characteristic	of	F1 = 3 /24.

F1 = 5/24,	F2	varies

7.19 	For	the	value	of	F1 = 5 /24,	which	is	near	the	tipping	point	value,	an	abrupt	transition	from	integration	to	segregation	is	observed,
as	expected,	when	the	tolerance	threshold	of	the	second	half	of	the	population	passes	it,	i.e.,	at	F2 = 5 /24	(Figure	10).	Then,
segregation	by	tolerance	starts	at	F2 = 13/24,	when	tolerant	agents	concentrate	at	the	boundaries	between	the	segregated
patches	(Figure	10b),	but	the	patterns	remain	segregated	until	F2 = 17/24.	At	F2 = 18/24,	the	integrated	patch	appears,	the	level
of	color	segregation	(IC)	abruptly	decreases,	while	the	level	of	tolerance	segregation	grows	rapidly.	For	all	F2 ≥ 19/24,	the
patterns	are	mixed	and	the	indices	stabilize.

Figure	10.	The	case	of	F1 = 5 /24	for	varying	F2:	(a)	Moran's	I	for	agents'	color	(IC),	tolerance	(IT),	and	the	C	index.	(b)	The
patterns	of	agents'	color	and	tolerance	at	t = 50,000.

F1 = 7/24,	F2	varies

7.20 	For	F1 = 7 /24,	which	is	above	the	tipping	point,	the	model	exhibits	a	simple	integration	–	segregation	dichotomy	and	mixed
patterns	do	not	emerge	(Figure	11).	Segregation	is	reached	abruptly	at	F2 = 3 /24	and	segregation	by	tolerance	begins	at	
F2 = 13/24,	with	the	F1-agents	located	along	the	border	of	the	blue	and	green	patches.

Figure	11.	The	case	of	F1 = 7 /24	and	varying	F2:	(a)	Moran's	I	for	agents'	color	(IC),	tolerance	(IT),	and	the	C-index.	(b)	The
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patterns	of	agents'	color	and	tolerance	at	t = 50,000.

Varying	F1	and	F2

7.21 	Figure	12	presents	the	values	of	the	IC,	IT	and	C	indices	as	dependent	on	F1	and	F2	for	α = 0.5	and	β = 0.5.	The	heat	map	of	C
(Figure	12c)	confirms	that	a	mixed	pattern	emerges	when	the	tolerance	of	one	of	the	subgroups	is	5/24	or	below,	while	the
tolerance	of	the	other	subgroup	is	16/24	or	above.	Tolerance	patterns	are	also	segregated	in	this	case	(Figure	12b).

7.22 	It	is	convenient	to	consider	the	pattern	change	according	to	the	F1-values.	For	F1 ∈ {0 /24, 1 /24, 2 /24},	segregation	by	color	(IC)
increases	gradually	with	the	increase	of	F2	until	a	mixed	pattern	is	formed	at	F2 = 13/24,	as	indicated	by	the	non-zero	segregation
by	tolerance	IT.	For	these	values	of	F1,	segregation	by	tolerance	exceeds	segregation	by	color	at	F2 = 17/24.	For	
F1 ∈ {3 /24, 4 /24, 5 /24},	with	the	increase	in	F2,	the	pattern	become	segregated	at	the	values	of	F2	close	to	the	tipping	point	of	
F2 = 5 /24	(Figure	12a),	while	a	mixed	pattern	emerges,	as	above,	for	F2 ≥ 17/24.	In	a	few	specific	cases,	the	mixed	pattern	is	not
segregated	by	tolerance.	These	are	cases	of	F1 = 3 /24,	F2 ∈ {8 /24, …, 14/24}	and	of	F1 = 4 /24,	F2 = 6 /24	(Figure	12c).

7.23 	Mixed	patterns	do	not	emerge	for	F1 > 5 /24.

Figure	12.	Heat	maps	for	the	three	indices	for	arbitrarily	F1	and	F2,	at	t = 50,000.

The	dynamics	of	the	mixed	patterns

7.24 	Let	us	use	the	example	of	F1 = 3 /24	and	F2 = 20/24	to	demonstrate	the	development	of	the	mixed	patterns.	This	time,	besides
initial	random	patter,	we	also	consider	the	initial	pattern	that	is	fully	segregated	by	color	and	random	according	to	the	tolerance.
Let	us	start	with	this	pattern	(Figure	13):
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Figure	13.	The	development	of	a	mixed	pattern	in	the	case	of	F1 = 3 /24,	F2 = 20/24.	The	initial	pattern	is	segregated	by	color
and	random	by	tolerance.	(a)	The	dynamics	of	IC,	IT	and	C;	(b)	The	dynamics	of	the	number	of	relocations,	by	tolerance	groups,

and	residential	patterns	at	different	time	steps.	The	dashed	line	represents	the	expected	number	of	relocations	of	satisfied
agents	(12.25	agents	per	time	step).

7.25 	According	to	Figure	13a,	the	level	of	color	segregation	(IC)	of	the	model	pattern	decreases	in	time,	while	the	level	of	segregation
by	tolerance	(IT)	and	the	level	of	mixing	(C)	increase.	Visually,	the	boundary	between	the	segregated	parts	of	the	pattern
dissolves	during	first	100	iterations	and	then,	towards	time	step	500,	the	tolerant	F1-agents	form	a	steady	integrated	area	(Figure
13b).

7.26 	During	the	entire	run,	the	number	of	migrating	F1	agents	who	are	highly	tolerant,	remains	close	to	the	expected	number	of

random	relocations	(12	agents	per	iteration[6],	marked	as	a	dashed	horizontal	line	in	Figure	13b).	The	relocation	rate	of	intolerant	
F2-agents	is	higher	than	the	one	of	the	F1-agents	at	the	first	200	time	steps	when	F2-agents	near	the	boundary	of	the	segregated
patches	relocate	into	the	internal	parts	of	the	patches.	As	a	result,	the	number	of	empty	cells	within	the	segregated	patches
decreases,	while	the	number	of	empty	cells	within	the	integrated	boundary	area	increases	(see	patterns	for	t > 200).	As	a	result,
cells	that	are	suitable	for	the	F2-agents	become	rare,	and	the	actual	number	of	relocations	of	the	F2-agents,	starting	from	t = 200,
decreases	far	below	12	(Figure	13b).

7.27 	Figure	14	represents	the	model	dynamics	for	the	same	values	of	F1 = 3 /24,	F2 = 20/24,	for	the	initial	pattern,	where	all	F1-agents
are	satisfied,	while	the	F2	agents	are	not.	As	a	result,	more	than	60%	of	the	F2	agents	relocate	during	the	first	time	step.	During
next	50	time	steps,	the	pattern	segregates	by	color	and	the	index	of	color	segregation	(IC)	grows.	The	number	of	relocations	of	F1
-agents	remains	very	close	to	12.	As	in	the	case	of	the	initially	segregated	pattern,	F2-agents	avoid	the	boundaries	of	segregated
patches	and	relocate	to	their	internal	parts.	This	initiates	segregation	by	tolerance	as	reflected	by	the	increasing	measures	IT	and	
C.	Regardless	of	whether	the	initial	pattern	is	segregated	or	random,	for	t = 200	and	further,	the	patterns'	statistical	characteristics
are	very	close,	while	they	remain	visually	different	for	a	much	longer	period.
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Figure	14.	The	development	of	a	mixed	pattern	in	the	case	of	F1 = 3 /24,	F2 = 20/24.	The	initial	pattern	is	integrated	by	color	and
by	tolerance	thresholds.	(a)	The	dynamics	of	IC,	IT	and	C;	(b)	The	dynamics	of	the	number	of	relocations	by	tolerance	groups,

and	residential	patterns	at	different	time	steps.	The	dashed	line	represents	the	expected	number	of	relocations	of	satisfied
agents	(12.25	agents	per	time	step).

Sensitivity	of	the	steady	pattern	to	the	model	parameters

7.28 	In	all	our	simulations,	the	number	of	F1	and	F2	agents	was	equal	(α = 0.5),	the	number	of	blue	and	green	agents	was	equal	too	(
β = 0.5),	the	relocation	rate	of	satisfied	agents	was	low	(m = 0.01),	and	the	neighborhood	was	5-by-5	cells.	In	this	section,	we
explore	the	sensitivity	of	the	major	model	result	–	the	emergence	of	the	mixed	patterns	to	these	parameters.

Sensitivity	to	the	fraction	α	of	F1	agents

7.29 	To	investigate	sensitivity	to	α	we	consider	the	case	of	F1 = 3 /24,	F2 = 20/24	that	is	carefully	studied	above	in	the	case	of	α = 0.5,
and	produces	mixed	patterns.	The	results	of	the	study	are	presented	in	Figure	15.
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Figure	15.	Varying	the	fraction	α	of	F1	agents	for	F1 = 3 /24,	F2 = 20/24:	(a)	Moran's	I	for	agents'	color	(IC),	tolerance	(IT),	and	the
C-index.	(b)	The	patterns	of	agents'	color	and	tolerance	at	t = 50,000.

7.30 	According	to	Figure	15,	the	size	of	the	integrated	patch	is	almost	proportional	to	the	value	of	α.	When	α	is	close	to	zero,	the
pattern	is	segregated	because	highly	intolerant	F2	agents	comprise	the	vast	majority	of	the	population.	Few	F1	agents	are
located	at	the	boundary	separating	the	blue	and	green	patches	(Figure	15b,	α = 0.05).	With	an	increase	in	α,	the	size	of	the
homogenous	patches	decreases,	while	the	integrated	area	grows,	as	reflected	in	the	steady	decrease	in	the	level	of	color
segregation	(IC).	The	level	of	segregation	by	tolerance	(IT)	and	the	level	of	mixing	(C)	grow,	with	the	increase	of	α	up	to	α = 0.5.
At	α = 0.5,	the	size	of	the	three	regions	is	similar	and	the	values	of	the	IT	and	C	are	the	highest.	With	the	further	increase	of	α,
homogenous	patches	shrink	and	the	integrated	area	dominates.

Sensitivity	to	the	fraction	β	of	blue	agents

7.31 	To	study	sensitivity	to	the	fraction	β	of	blue	agents,	we	exploit	the	same	case	of	F1 = 3 /24,	F2 = 20/24,	keeping	the	fraction	of	F1
and	F2	agents	equal	(α = 0.5).	The	results	of	the	study	are	presented	in	Figure	16.

Figure	16.	Varying	the	fraction	β	of	blue	agents	for	F1 = 3 /24,	F2 = 20/24:	(a)	Moran's	I	for	agents'	color	(IC),	tolerance	(IT),	and
the	C-index.	(b)	The	patterns	of	agents'	color	and	tolerance	at	t = 50,000.

7.32 	When	the	vast	majority	of	agents	are	green	(Figure	16b,	β = 0.05),	few	blue	agents	form	a	small	patch.	Blue	F2	agents	reside
within	this	patch.	Blue	F1	agents	occupy	the	patch	edge,	but	are	too	few	to	create	a	distinct	integrated	area.	As	β	increases,	the
integrated	area	becomes	apparent	and	grows	until	reaching	a	maximum	at	β = 0.5.	The	level	of	segregation	by	color	(IT)	and	the
level	of	mixed	integration	and	segregation	(C)	increase	with	the	growth	of	β	to	0.5	and	then	decrease,	while	IC	behaves	in	the
opposite	manner.

Sensitivity	to	probability	m	of	relocation	of	satisfied	agents

7.33 	To	investigate	the	dependence	of	the	mixed	patterns	on	the	probability	m	of	relocation	of	a	satisfied	agent,	we	consider	the	case
of	F1 = 3 /34	and	vary	the	values	of	F2	and	m.
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7.34 	According	to	the	heat	maps	(Figure	17),	for	F2 ≥ 18/24,	mixed	patterns	emerge	for	any	m ≥ 0.01.	For	these	values	of	F2,	the
tolerance	pattern	is	always	segregated	(Figure	17b)	and	the	value	of	C	is	high	(Figure	17c).

7.35 	The	heat	maps	also	indicate	that,	roughly,	for	a	F2	between	8/24	and	17/24,	the	model	produces	a	mixed	pattern	without	the
segregation	of	agents	by	tolerance.	These	mixed	patterns	are	sensitive	to	the	value	of	m	and	tend	to	diminish	as	m	grows.

Figure	17.	The	dependence	of	the	three	indices	on	m	and	F2	for	the	case	of	F1 = 3 /24	and	α,	β = 0.5.

Sensitivity	to	the	neighborhood's	size

7.36 	To	test	sensitivity	of	mixed	patterns	to	the	size	of	the	neighborhood,	we	consider	the	case	of	F1 = 0 /24,	F2 = 20/24	and	vary	the
neighborhood	size	from	3 × 3	to	9 × 9.	In	order	to	keep	the	neighborhood	small	relative	to	the	grid	size,	we	use	a	twice	as	large
grid	of	100 × 100	cells.	We	also	increase	the	number	of	empty	cells	w	considered	by	agents	when	relocating	from	30	to	120.

7.37 	For	the	3 × 3	neighborhoods,	the	intolerant	F2	agents	produce	many	small	homogeneous	patches	while	the	tolerant	F1	agents
occupy	the	boundaries	of	these	patches	and,	in	addition,	produce	integrated	patches	of	a	small	size	(Figure	18).	For	larger
neighborhood	sizes,	the	agents	produce	distinct	mixed	patterns	that	consist	of	two	large	homogeneous	patches	and	an	integrated
area.
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Figure	18.	Steady	mixed	patterns	for	different	neighborhood	sizes.	All	indices	are	calculated	based	on	5 × 5	neighborhoods.

7.4.	Beta-binomial	distribution	of	tolerance

7.38 	To	go	beyond	dichotomous	distributions	of	tolerance,	we	consider	cases	where	agents	of	both	colors	are	assigned	one	of	the	25
tolerance	thresholds	{0 /24, 1 /24, …, 24/24}	according	to	the	Beta	binomial	family	of	distributions.	To	generate	different	Beta
binomial	distributions,	we	modifying	the	two	shape	parameters	s1	and	s2	of	the	Beta-binomial	distribution:	BB(24, s1, s2).	The
numbers	of	blue	and	green	agents	are	equal	(β = 0.5).

Five	qualitatively	different	Beta	binomial	distributions

7.39 	We	begin	by	comparing	five	qualitatively	different	Beta	binomial	distributions	(Figure	19).	The	first	is	positively	skewed	and
unimodal	wherein	the	tolerance	of	about	1/3	of	the	agents	is	below	the	tipping	point	(F < 5 /24)	and	the	average	is	about	7/24
(Figure	19a).	This	distribution	leads	to	a	pattern	that	is	mixed	by	color	and	integrated	by	tolerance	(C = 0.07,	IC = 0.49,	IT = 0.02).
The	second	case	is	symmetric	and	unimodal	(Figure	19b)	where	only	about	4%	of	the	agents	have	a	tolerance	threshold	below
the	tipping	point	and	the	average	is	12/24,	which	is	much	higher	than	the	tipping	point.	As	expected,	the	steady	color	pattern	is
segregated,	while	the	tolerance	pattern	remains	integrated,	IC = 0.84,	IT = 0.03,	C = 0.
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Figure	19.	Steady	color	(top)	and	tolerance	(middle)	patterns	for	five	distributions	of	tolerance	thresholds	(bottom),	at	t = 50,000.

7.40 	The	third	case	is	a	uniform	Beta	binomial	distribution	(Figure	19c)	with	20%	of	the	agents	having	tolerance	thresholds	below	the
tipping	point	and	an	average	of	12/24.	The	steady	pattern	in	this	case	is	segregated	by	color	(IC = 0.70),	with	small	integrated
patches	within	the	larger	segregated	areas	(C = 0.07).	The	tolerance	pattern	is	somewhat	segregated	(IT = 0.16)	with	a	clear
concentration	of	the	tolerant	agents	on	the	boundary	between	the	color	patches.	The	fourth	case	is	a	symmetric	U-shaped
distribution	with	about	29%	of	the	agents	having	tolerance	thresholds	below	the	tipping	point	(Figure	19d),	and	an	average	of
12/24	(Figure	19e).	The	color	pattern	is	somewhat	mixed	(IC = 0.52,	C = 0.09),	while	the	segregation	of	tolerance	is	high	(IT = 0.45
),	still	below	IC.

7.41 	The	fifth	case	(Figure	19e)	is	another	symmetric	U-shaped	distribution	with	an	even	higher	variance	than	in	case	four.	The
average	tolerance	in	this	case	is	12/24	and	39%	of	the	agents	have	tolerance	thresholds	below	the	tipping	point.	This	distribution
leads	to	a	mixed	color	pattern	that	looks	more	distinct	(C = 0.10)	and	a	level	of	segregation	by	tolerance	(IT = 0.61)	that	is	higher
than	the	level	segregation	by	color	(IC = 0.46).

Systematic	study	of	Beta	binomial	distributions

7.42 	The	heat	maps	in	Figure	20	depict	the	dependence	of	the	model	patterns	on	a	larger	set	of	900	Beta	binomial	distributions	that
are	defined	according	to	the	shape	parameters	s1	and	s2.	The	characteristics	of	the	outputs	for	symmetric	distributions,	where	
s1 = s2,	are	located	on	the	diagonal,	the	distributions	that	are	skewed	toward	lower	tolerances	are	above	the	diagonal	and	those
skewed	toward	higher	tolerances	are	situated	below	the	diagonal	(Figure	20,	bottom	right).

7.43 	The	heat	map	of	the	C	index	confirms	that	the	most	distinct	mixed	patterns	are	produced	by	U	shaped	distributions	obtained	for
the	values	of	s1,	and	s2	that	are	essentially	lower	than	one.	These	distributions	are	characterized	by	the	high	fractions	of	agents
with	low	and	high	tolerance	thresholds.	The	IT	heat	map	indicates	that	agents'	tolerance	is	highly	segregated	in	these	patterns.
The	mixed	patterns	are	preserved,	but	are	less	distinct	(C < 0.1)	as	the	U	shaped	distribution	becomes	unimodal	(s1, s2 > 1).

7.44 	In	addition,	the	heat	maps	show	that	less	distinct	mixed	patterns	occur	at	the	boundary	between	integrated	and	segregated
patterns.	More	specifically,	we	can	see	that	for	s1 ≥ 1	positive	C	values	roughly	follow	the	line	s2 = 3 ∗ s1 − 1.4.	For	these	values	of	
s1	and	s2,	the	tolerance	distribution	is	negatively	skewed	and	the	fraction	of	tolerant	agents	(F < 5 /24)	is	about	30%.	As	shown	in
Section	7.4.1	(Figure	19a)	in	this	case	the	mixed	patterns	occur	even	when	the	tolerance	pattern	is	integrated.
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Figure	20.	Dependence	of	IC,	IT	and	C	on	the	parameters	s1	and	s2	of	Beta-binomial	distributions	of	agents'	tolerance	
BB(24, s1, s2).	C	index	is	shown	in	percentages.

Conclusions
8.1 	The	objective	of	our	study	was	to	investigate	the	conditions	under	which	the	Schelling	model	produces	patterns	that	mix

integration	and	segregation.	Our	interest	in	these	patterns	is	not	purely	theoretical,	but	dictated	by	the	ethnic	patterns	in	many
cities	that	are	composed	of	homogeneous	and	heterogeneous	neighborhoods.	As	we	demonstrate,	mixed	residential	patterns
emerge	when	we	relax	the	unrealistic	assumption	of	a	common	tolerance	and	assume	that	different	agents	can	have	differing
tolerance	thresholds.

8.2 	In	dichotomous	cases,	when	the	agents'	tolerance	is	either	F1	or	F2,	the	mixed	patterns	emerge	in	the	model	when	the	tolerance
of	the	F1	agents	is	below	~21%	(F1 ≤ 5 /24),	while	agents	of	the	second	group	need	more	than	2/3	of	their	neighbors	to	be	friends
(F2 > 16/24).	For	these	tolerance	thresholds	the	F1-agents	are	satisfied	almost	everywhere,	while	the	F2-agents	are	highly
intolerant	and	seek	neighborhoods	with	sufficiently	high	fractions	of	friends.	The	steady	pattern	of	agents'	tolerance	in	these
cases	is	segregated	and	the	blue	and	green	F2-agents	form	two	segregated	patches,	while	the	F1	agents	of	both	colors
concentrate	within	the	integrated	areas	that	separate	the	patches	of	the	F2-agents.

8.3 	For	very	low	tolerance	threshold	of	half	of	the	agents,	F1 ≤ 1 /24,	varying	the	tolerance	F2	of	the	other	half	from	0/24	to	24/24
causes	a	gradual	transformation	of	the	pattern	from	integrated	to	a	mixed	state.	However,	for	F1 ∈ [3 /24, 5 /24],	the	growth	of	F2
causes	the	pattern	to	first	evolve	from	integration	to	segregation	and	only	then	from	segregation	to	mixed.

8.4 	Mixed	patterns	emerge	because	intolerant	agents	leave	integrated	areas	and	create	dense	blue	and	green	patches	with	few
empty	cells	inside.	Integrated	areas	serve	as	wide	extended	boundaries	between	the	segregated	patches.	Visually,	tolerant
agents	reside	within	the	integrated	areas	and,	mostly,	migrate	within	them	for	random	reasons,	while	intolerant	agents	migrate
within	the	segregated	patches	only.	This	happens	because	the	residential	opportunities	available	for	the	tolerant	agents	include
both	integrated	areas	and	segregated	patches	of	their	color	and,	thus,	are	essentially	wider	that	those	for	the	intolerant	ones.
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8.5 	As	long	as	part	of	the	population	is	tolerant,	while	the	rest	is	highly	intolerant,	mixed	patterns	emerge	regardless	of	other	model
parameters.	In	particular,	the	patterns	remain	mixed	irrespective	of	the	fraction	α	of	the	F1-agents,	fraction	β	of	blue	agents,	the
rate	m	of	random	relocation,	and	the	neighborhood	size.	Model	parameters	influence	the	size	of	the	segregated	and	integrated
patches,	but	not	the	mixed	nature	of	the	patterns	that	is	always	preserved.

8.6 	If	agents'	tolerance	thresholds	are	distributed	over	the	entire	[0, 1]	range,	the	mixed	patterns	became	more	distinct	with	the
growth	of	the	fraction	of	agents	with	extreme	tolerance	thresholds.	In	particular,	U-shaped	distributions	produce	distinct	mixed
patterns.	Less	distinct	mixed	patterns	emerge	when	the	tolerance	of	about	one-third	of	the	agents	is	below	5/24.

8.7 	To	conclude,	the	Schelling	model	produces	mixed	patterns	due	to	the	relocation	of	intolerant	agents	out	of	the	integrated	areas.
Residential	movements	of	this	kind,	such	as	the	relocation	of	white	residents	out	of	ethnically	integrated	neighborhoods	(Crowder
2000),	might	have	indeed	contributed	to	the	formation	of	mixed	patterns	in	cities.	Additional	factors,	such	as	economic	status	and
dwelling	prices	(Benard	&	Willer	2007;	Fossett	2006;	Hatna	&	Benenson	2011),	are	likely	to	provide	deeper	insight	into	the
formation	of	mixed	patterns	as	segregated	and	integrated	neighborhoods	may	attract	different	economic	segments	of	the
residents'	population	of	the	same	ethnicity.

8.8 	While	abstract	models	would	allow	identifying	additional	explanations	for	the	formation	of	mixed	patterns,	residential	models	of
real	cities	(Benenson	et	al.	2002;	Yin	2009)	could	be	exploited	to	assess	their	validity.	Such	spatially	explicit	models	require	a
significant	amount	of	data	on	the	ethnic	and	socio-economic	patterns	of	residence.	Fortunately,	these	large	quantities	of	data	are
being	collected	in	many	countries	as	part	of	recent	national	census	programs,	and	small	unit	geographies	(such	as	US	census
blocks	and	UK	census	output	areas)	offer	a	detailed	view	of	the	changing	ethnic	patterns.
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Notes

	1The	Shannon	entropy	index	also	includes	the	census	category	"Other",	which	is	not	shown	in	Figure	2.

2In	one	of	the	variations	of	the	linear	model,	where	agent	movement	is	restricted	by	distance,	Schelling	(1971,	p.	153–154)
formulated	a	similar	mechanism	where	agents	would	move	to	a	neighborhood	with	3/8	friends,	if	no	nearby	neighborhood	with
the	desired	4/8	exists.

3This	number	is	determined	using	a	computer	program	that	builds	all	possible	permutations	of	occupied/uncoupled	cells	for	the	
n × n	neighborhood.

4For	the	specific	parameters	used	in	this	study	(density	of	d = 0.98	and	neighborhoods	dimensions	of	5 × 5),	the	highest	value	of	
IC	is	about	0.93.

5Note	that	all	our	estimates	are	based	on	finite	50,000-step	simulations,	and	the	pattern	that	remains	integrated	after	50,000	time
steps	may	still	segregate	later.	That	is,	the	actual	value	of	a	tipping	point	as	dependent	on	m	may	be	slightly	lower.

6The	expected	number	of	relocations,	per	iteration,	of	satisfied	agents	given	that	all	their	attempts	are	successful,	is	the	product	of
m	and	the	number	of	agents	of	each	type:	β∗ N ∗ N ∗ density ∗ m = 0.5 ∗ 50 ∗ 50 ∗ 0.98 ∗ 0.01 = 12.25.

References
	ANSELIN,	L.	(1995).	Local	indicators	of	spatial	association–LISA.	Geographical	Analysis,	27(2),	93–115.	[doi:10.1111/j.1538-
4632.1995.tb00338.x]

ARNDT,	C.	(2004).	Information	measures:	Information	and	its	description	in	science	and	engineering.	Signals	and
Communication	Technology.	Berlin:	Springer.

BENARD,	S.,	&	Willer,	R.	(2007).	A	wealth	and	status-based	model	of	residential	segregation.	Mathematical	Sociology,	31(2),
149–174.	[doi:10.1080/00222500601188486]

BENENSON,	I.,	&	Hatna,	E.	(2011).	Minority-majority	relations	in	the	Schelling	model	of	residential	dynamics.	Geographical
Analysis,	43,	287–305.	[doi:10.1111/j.1538-4632.2011.00820.x]

BENENSON,	I.,	Omer,	I.,	&	Hatna,	E.	(2012).	Entity-based	modeling	of	urban	residential	dynamics	-	the	case	of	Yaffo,	Tel-Aviv.

http://jasss.soc.surrey.ac.uk/18/4/15.html 21 31/10/2015

http://dx.doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://dx.doi.org/10.1080/00222500601188486
http://dx.doi.org/10.1111/j.1538-4632.2011.00820.x


Environment	and	Planning	B,	29,	491-512.	[doi:10.1068/b1287]

BRUCH,	E.,	&	Mare,	R.	(2006).	Neighborhood	choice	and	neighborhood	change.	American	Journal	of	Sociology,	112(3),	667–
709.	[doi:10.1086/507856]

BRUCH,	E.,	&	Mare,	R.	(2009).	Preference	and	pathways	to	segregation:	Reply	to	Van	de	Rijt,	Siegel,	and	Macy,	American
Journal	of	Sociology,	114(4),	1181–1198.	[doi:10.1086/597599]

CORNFORTH,	D.,	Green	D.G.,	&	Newth,	D.	(2005).	Ordered	asynchronous	processes	in	multi-agent	systems.	Physica	D,	204,
70–82.	[doi:10.1016/j.physd.2005.04.005]

CROWDER,	K.	(2000).	The	racial	context	of	white	mobility:	An	individual-level	assessment	of	the	White	Flight	Hypothesis.	Social
Science	Research,	29,	223–257.	[doi:10.1006/ssre.1999.0668]

ELLIS,	M.,	Holloway,	S.R.,	Wright,	R.,	&	Fowler,	C.S.	(2012).	Agents	of	change:	Mixed-race	households	and	the	dynamics	of
neighborhood	segregation	in	the	United	States,	Annals	of	the	Association	of	American	Geographers,	102(3),	549–570.
[doi:10.1080/00045608.2011.627057]

FOSSETT,	M.A.	(2006).	Including	preference	and	social	distance	dynamics	in	multi-factor	theories	of	segregation.	Mathematical
Sociology,	30(3–4),	289–298.	[doi:10.1080/00222500500544151]

GLAESER,	E.,	&	Vigdor,	J.	(2012).	The	end	of	the	segregated	century:	Racial	separation	in	America's	neighborhoods,	1890–
2010.	Manhattan	Institute,	Civic	Report	No.	66.

HATNA,	E.,	&	Benenson,	I.	(2011).	Geosimulation	of	the	income-based	urban	residential	patterns.	In	D.	Marceau	and	I.
Benenson	(Eds.),	Advanced	Geosimulation	Models.	Hilversum:	Bentham	Science	Publishers.

HATNA	E.,	&	Benenson	I.	(2012).	The	Schelling	Model	of	ethnic	residential	dynamics:	Beyond	the	integrated–segregated
dichotomy	of	patterns.	Journal	of	Artificial	Societies	and	Social	Simulation,	15(1),	6	http://jasss.soc.surrey.ac.uk/15/1/6.html

LOGAN	J.,	&	Stults	B.	(2011).	The	persistence	of	segregation	in	the	metropolis:	New	findings	from	the	2010	census.	Census	Brief
prepared	for	Project	US2010.	Retrieved	from	http://www.s4.brown.edu/us2010.	Accessed	June	19,	2014.

SCHELLING,	T.C.	(1969).	Models	of	segregation.	American	Economic	Review,	59,	488–493.

SCHELLING,	T.	C.	(1971).	Dynamic	models	of	segregation.	Mathematical	Sociology,	1,	143–186.
[doi:10.1080/0022250X.1971.9989794]

SCHELLING,	T.C.	(1974).	On	the	ecology	of	micromotives.	In	The	Corporate	Society.	Marris,	R.	(ed).	(pp.	19–64)	London:
Macmillan.

SCHELLING,	T.C.	(1978).	Micromotives	and	macrobehavior.	New	York:	WW	Norton.

VINKOVIC,	D.,	&	Kirman,	A.	(2006).	A	physical	analogue	of	the	Schelling	model.	Proceedings	of	the	National	Academy	of
Sciences,	103(51),	19261–19265.	[doi:10.1073/pnas.0609371103]

XIE,	Y.,	&	Zhou,	X.	(2012).	Modeling	individual	heterogeneity	in	racial	residential	segregation.	Proceedings	of	the	National
Academy	of	Sciences,	109(29),	11646–11651.	[doi:10.1073/pnas.1202218109]

YIN,	L.	(2009).	The	dynamics	of	residential	segregation	in	Buffalo:	An	agent-based	simulation.	Urban	Studies,	46(13).	2748–
2770.	[doi:10.1177/0042098009346326]

Processing	math:	100%

http://jasss.soc.surrey.ac.uk/18/4/15.html 22 31/10/2015

http://dx.doi.org/10.1068/b1287
http://dx.doi.org/10.1086/507856
http://dx.doi.org/10.1086/597599
http://dx.doi.org/10.1016/j.physd.2005.04.005
http://dx.doi.org/10.1006/ssre.1999.0668
http://dx.doi.org/10.1080/00045608.2011.627057
http://dx.doi.org/10.1080/00222500500544151
http://jasss.soc.surrey.ac.uk/15/1/6.html
http://www.s4.brown.edu/us2010
http://dx.doi.org/10.1080/0022250X.1971.9989794
http://dx.doi.org/10.1073/pnas.0609371103
http://dx.doi.org/10.1073/pnas.1202218109
http://dx.doi.org/10.1177/0042098009346326

	Abstract
	Introduction
	Urban patterns of ethnicity
	The Schelling model
	3.1. Schelling's original studies
	3.2. Later studies

	Model rules
	Model Investigation
	Tolerance thresholds of agents
	General settings

	Evaluation of the model outcomes
	Index of color (IC) and tolerance (IT) segregation
	Identifying mixed patterns (C index)

	Results
	All agents share the same tolerance threshold F
	m=0 – Satisfied agents do not move
	The dependence of the tipping point on m (m>0)
	Dependence of the time of convergence to segregation on F
	Details of patterns' dynamics

	7.2. Two sub-groups characterized by different tolerance thresholds
	F1=0, F2 varies
	F1=3/24, F2 varies
	F1=5/24, F2 varies
	F1=7/24, F2 varies
	Varying F1 and F2
	The dynamics of the mixed patterns

	Sensitivity of the steady pattern to the model parameters
	Sensitivity to the fraction α of F1 agents
	Sensitivity to the fraction β of blue agents
	Sensitivity to probability m of relocation of satisfied agents
	Sensitivity to the neighborhood's size

	7.4. Beta-binomial distribution of tolerance
	Five qualitatively different Beta binomial distributions
	Systematic study of Beta binomial distributions


	Conclusions
	Acknowledgements
	Notes
	References

