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The Schelling model describing segregation between two groups of residential agents,

reflects the most abstract, basic view of noneconomic forces motivating residential

migrations: be close to people of ‘‘your own’’ kind. The model assumes that residential

agents, located in neighborhoods where the fraction of ‘‘friends’’ is less than a pre-

defined threshold value F, try to relocate to neighborhoods where this fraction is F or

higher. For groups of equal size, Schelling’s residential pattern converges either to

complete integration (random pattern) or segregation, depending on F. We investigate

Schelling model pattern dynamics as a function of F in addition to two other param-

eters—the ratio of groups’ numbers, and neighborhood size. We demonstrate that the

traditional integration–segregation pattern dichotomy should be extended. In the case

of groups of different sizes, a wide interval of F-values exists that entails a third per-

sistent residential pattern, one in which a portion of the majority population segregates

while the rest remains integrated with the minority. We also demonstrate that Schelling

model dynamics essentially depend on the formalization of urban agents’ residential

behavior. To obtain realistic results, the agents should be satisficers, and the fraction of

the agents relocating irrespective of the neighborhood’s state should be nonzero. We

discuss the relationship between our results and real-world residential dynamics.

Introduction

The Schelling model’s basic framework

The Schelling model of segregation (Schelling 1971, 1978) reflects a very basic,

abstract view of noneconomic forces motivating residential migration: be close to

people of ‘‘your own’’ kind. Formally, residential agents occupy cells of rectangular

residential space, not more than one agent per cell. Agents are of two types, which

we denote here as B(lue) and G(reen). Agents ‘‘know’’ the state of every cell in the

neighborhood surrounding their own locations—whether a cell is occupied and, if

so, by what type of resident.
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The model’s basic assumption is as follows: an agent, located in the center of a

neighborhood where the fraction of friends f is less than a predefined threshold

value F (i.e., foF) will want to relocate to a neighborhood where f � F (Schelling

1978, p. 148).1

Schelling (1978, p. 138) used the model to examine ‘‘some of the individual

incentives and individual perceptions of difference that can lead collectively to

segregation.’’ To do so, he placed equal numbers of dimes and pennies on squares

of a chessboard-sized sheet of paper and assumed that every dime or penny wanted

‘‘something more than one-third’’ of its neighbors within its 3 � 3 neighborhood to

be like itself. Any dime or penny whose neighborhood did not meet this condition

moved to the nearest square that did satisfy it (Schelling 1978, pp. 147–48).

Regardless of the initial pattern and the order of moves, the dimes and pennies

in Schelling’s experiment quickly segregated, and the pattern stalled. In this

and similar experiments, Schelling demonstrated that for F above one-third, all

patterns converge to a segregated equilibrium. He thus concluded that micro-

behavior aimed at satisfying relatively weak individual demands (i.e., to reside

within a neighborhood where F � 1/3 only), results in a completely segregated

macropattern. He also noted that the properties of the equilibrium pattern depend

on the value of F and that F can differ for dimes and for pennies (Schelling 1978,

pp. 153–54), although he did not investigate these issues.

In this article, we claim that the traditional, integration–segregation description of

the persistent patterns produced by the Schelling model should be extended. For the

case of groups of unequal size, we demonstrate the existence of a wide interval of F-

values that encompasses a third persistent residential pattern, one in which a portion

of the majority group segregates while the rest remains integrated with the minority.

Our study aims to extend Schelling’s theoretical framework. We thus ignore

numerous real-world factors that can influence real-world residential choice, such

as the hierarchical structure of residential space (e.g., apartment, entrance, build-

ing, and neighborhood), commuting and relocation costs, and distance from work.

Schelling model studies: state of the art

Standard settings and the basic dichotomy of persistent patterns

The settings that Schelling (1978) establishes can be described as follows:

S1. The city is a grid of cells, and each cell’s neighborhood is a 3 � 3 square,

truncated by the city’s boundaries if they lie in close proximity.

S2. The city is populated by agents, each belonging to one of two groups of equal

size, B(lue) and G(reen); B : G 5 1 : 1.

S3. The initial distribution of agents on the grid city is random; a fraction of cells

is vacant, with this number being sufficient to allow relocation.

S4. Model dynamics are considered in discrete time. At each time step, every

agent estimates the fraction f of neighbors of its own type (friends) within the

neighborhood (empty places are ignored).
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S5. There exists a threshold value F, common to all agents, that represents the

fraction of friends desired within each neighborhood. An agent located at the

center of a neighborhood where foF decides to leave its cell and relocate to

the closest empty cell satisfying the condition f � F.

S6. Information about a cell left by an agent becomes immediately available to

all agents.

In this article, we call S1–S6 the Schelling model’s standard settings.

According to Schelling (1971), for standard settings and Fo1/3, the model’s

residential pattern eventually converges to a pattern that is visually indistinguish-

able from the random one, while for F � 1/3, the model’s residential pattern con-

verges to a segregated pattern, characterized by one or more large (i.e., several

times larger than the 3 � 3 neighborhood) homogeneous patches of B- and G-

agents. These patches are separated by unpopulated boundaries (Fig. 1).

But the standard settings are incomplete. For example, they do not consider the

important situation where an agent decides to relocate, but no vacancies are available

satisfying the condition f � F. This feature implies that one should be cautious when

comparing the results of different studies. The consequences of formal implementation

of the same conditions may be only apparently equivalent yet substantively dissimilar.

Studies of the Schelling model

The Schelling model is studied mainly through simulation.2 Research tends to focus

on settings that are more general than the standard setting (S1–S6). Flache and

Hegselmann (2001) investigated the model for irregular partitions of the plane and

demonstrate that convergence toward either the segregated or the random pattern is

Figure 1. Persistent residential patterns of the standard Schelling model in the case of 95%

density of agents: (a) F 5 0.2, the residential pattern cannot be distinguished from a random

one; (b) F 5 0.8, the residential pattern is segregated.
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characteristic of the model irrespective of neighborhood size and form. Laurie and

Jaggi (2002, 2003) probed into whether Schelling model dynamics depend on the

radius of a cell’s neighborhood. They claimed that for any given F the number of

homogeneous patches in the patterns decreases, with patch size increasing with the

growth in neighborhood size. Portugali, Benenson, and Omer (1994) and Portugali

and Benenson (1995) explore Schelling’s claim that the symmetric behavior of the

B- and G-agents is not at all necessary for segregation to emerge. They show that

the model’s residential pattern converges toward segregation even if agents of one

type only react to neighborhood structure while agents of the second type are fully

tolerant of the other’s presence.

The ‘‘bounded neighborhood’’ version of the Schelling model (Schelling 1978, p.

155) considers residential space as divided into square ‘‘blocks’’ of cells. No matter

where an agent is located, whether in a block’s center or close to its boundary, this

agent reacts to the fraction of friends within the block and chooses to leave its cell if

this fraction is below F. The analytical and nonspatial investigations of this version of

the model by Schelling (1978) and Clark (1991, 1993, 2002, 2006) demonstrate that,

like the basic version of the model, if all agents demand a sufficiently high fraction of

friends, then a block’s population becomes homogeneous over time.

A spatial version of the bounded neighborhood model, in which agents ac-

count for the population structure of adjacent blocks, is investigated in depth in a

series of recent simulations studies (Fossett and Waren 2005; Fossett 2006a, b;

Clark and Fossett 2008). Modification of the model’s assumptions reflects the res-

idential behavior of the main ethnic groups—White, Black, and Hispanic—popu-

lating U.S. cities. As might be expected, system dynamics become more variable

under these settings than in the basic Schelling model. Complexity going beyond

the basic random-segregated dichotomy of residential patterns also is characteristic

of agents who differed in two or more Boolean characteristics (Benenson 1998), as

well as of those who exchange residences rather than search (as predicted by S5) for

vacancies over all unoccupied cells (Pollicott and Weiss 2001; Zhang 2004).

To summarize, some studies of Schelling’s model confirm the basic random-

segregated dichotomy, while some modify it. We thus require a general theoretical

insight into the variety of the patterns engendered by the Schelling model in order

to reach the level of generalization necessary to encompass different results. A first

step in this direction was recently taken by Vinkovic and Kirman (2006), who de-

fine and investigate a continuous, in space and in time, analog of the Schelling

model. They propose distinguishing between two types of the relocation rules that

result in two distinctive types of persistent patterns: ‘‘solid’’ and ‘‘liquid.’’ The rules

that allow relocation to the better location only result in solid-like residential dy-

namics, that is, the system stalls when converging to a pattern in which none of the

agents can improve their current state. The set of rules that allows relocation to cells

of the same utility results in liquid-like dynamics, meaning that the pattern varies

slowly and never stalls while preserving its integral characteristics, such as level of

segregation, as agents migrate between equally satisfying locations. Vinkovic and

Geographical Analysis

290



Kirman (2006) demonstrate that qualitatively different solid-like patterns are nu-

merous, depending on the model settings (e.g., the number of empty cells). The

persistent liquid-like patterns are simple and consist of two large clusters of agents

of each type, irrespective of variations in the model details.

This article is a step toward systematic investigation of the traditional—dis-

crete—Schelling model. Following Vinkovic and Kirman (2006), we search for sets

of rules and rule parameters that result in solid-like and liquid-like dynamics. We

examine the model as if it depends on the threshold fraction of friends F for two

basic types of agent behavior: satisficing and maximizing (Simon 1982)–and for

varying ratios of B and G population groups.

Our study confirms that the basic distinction between the rule sets that result in

solid and liquid patterns, respectively, remain valid in the case of the discrete version

of the Schelling model. The maximizing behavior of residential agents entails solid-

like dynamics: the model’s residential patterns are always segregated, their variety is

high, and they are very sensitive to initial conditions and behavioral rule parameters.

We present several representative examples of these dynamics while focusing on

satisficing residential behavior, an option implemented by Schelling himself.

Agents’ satisficing residential behavior entails liquid dynamics. With this kind

of residential behavior, we discover additional persistent, nonrandom, and non-

segregated patterns, observed when the numbers of the B- and G-groups differ.

These new patterns consist of two parts, a homogeneous part, occupied exclusively

by members of the majority and a ‘‘mixed’’ part, where the members of two groups

coexist. The lower the fraction of the minority, the wider the interval of F-values

allowing for mixed patterns. We next discuss the correspondence between the

model results and real-world residential dynamics.

A detailed description of the model

Next, we consider, the Schelling model in discrete time and space, where a city is a

torus grid of cells, populated by B- and G-agents who act in discrete time

t 5 0, 1, 2, . . . (we omit index t unless its meaning becomes ambiguous). At each

time step, every agent decides whether and where to relocate. Agents are consid-

ered in a random order, which is established anew at each time step. We follow

Schelling’s condition S6 and assume that an agent observes the system’s changes

immediately after they occur. Formally, this view corresponds to asynchronous

updating (Cornforth, Green, and Newth 2005).

Model rules and definitions

Consider a torus city of cells of size N � N. Each cell can be occupied by only one

residential agent. The fraction of empty cells in the city is d40. Agents can belong

to one of two groups—B(lue) or G(reen). We assume the following:

� An agent located at cell h remains there, or relocates, in response to the frac-

tion of friends (agents of the same group) within the neighborhood of h.
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� An agent can relocate for reasons independent of the number of friends within

its neighborhood (we refer to these as random reasons) with probability m.

� When relocating, an agent is able to consider and compare not more than w

vacant locations; the awareness of agent a located at h about vacancy v does

not depend on the distance between h and v.

Next we consider Moore neighborhoods of radius r; that is, a square of

(2r11) � (2r11) size with h in the center (Moore 1970). For convenience, we

exclude h itself from the neighborhood. For an agent a located at cell h, let us denote

� the neighborhood of h, excluding h itself, as U(h);

� the fraction of a-type friends among the agents located within U(h) as fa(h); and

� the minimal fraction of friends necessary for a’s remaining within U(h) as F.

Agent a’s relocation is decided according to the following rules:

Step 1: Decide whether to try to relocate:

� Estimate fa(h) by dividing the number of agents of a-type within U(h) by the

overall number of agents there while ignoring h and the empty cells within U(h).

� Generate a random number p, uniformly distributed on (0, 1).

� If fa(h)oF or pom decide to try to relocate; otherwise, decide to stay at h.

Step 2: If the decision is to try to relocate, then search for a new location and

decide whether to move there:

� Construct set V(a) of opportunities by randomly selecting w vacancies from all

of the city’s current vacancies.

� Estimate utility ua(v) of each AV(a) as ua(v) 5 min(fa(v), F); that is, follow the

satisficing behavior rule and consider all vacancies with F or higher fractions of

friends as having the same utility.

� Select the vacancy vbestAV(a) whose utility ua(vbest) is the highest among all

vAV(a). If there are several best vacancies, choose one at random.

� Move to vbest if

� the fraction of friends at the current location is low—that is, ua(h)oF—and

relocating would improve it; that is, ua(vbest)4ua(h);

� the reason for relocating is other than an unfriendly neighborhood—that is,

ua(h) � F—whereas the new neighborhood is also friendly; that is,

ua(vbest) � F.

� Otherwise stay at h.

The sequence of model events is presented in Fig. 2. Note that an agent located

at location a, for which faoF, relocates to a vacancy v only if fv4fa. An agent

located at a, for which fa � F, relocates only for ‘‘random reasons,’’ with proba-

bility m and, in accordance with the model rules, without improving its utility.
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We should emphasize that following Schelling (1978), model agents are ‘‘sat-

isficers’’ (Simon 1982); that is, they consider two vacancies as equally good so far

as both have a fraction of friends equal to or above F. We might thus expect liquid

system dynamics (Vinkovic and Kirman 2006). Subsequently, we also discuss the

‘‘maximizer’s’’ perspective when, for a, the utility ua(v) of location v equals the

number of friends within U(v).

We next specify the model parameters and describe the model’s results.

Model settings and initial conditions

We consider a city represented by the 50 � 50 torus and investigate the model’s

dynamics for the following set of parameters:

� square (Moore) neighborhoods for r 5 1–4;

Figure 2. Flow chart of the simulation model.
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� the fraction b of the minority B-group varying over [0, 0.5]; and

� the threshold intolerance F varying over [0, 1].

We assume that

� the probability of random relocation m is low but nonzero; accordingly, we

employ m 5 0.01 per time step;

� the majority of, but not all, cells in an urban space are occupied; accordingly,

we employ the value d 5 0.02; and

� an agent tests many vacancies per time step when considering relocation;

accordingly, we employ w 5 30.

Note that for a neighborhood of radius r, the number of friends can vary be-

tween 0 and n(r) 5 (2r11)(2r11)� 1. That is, for any given r, we can study the

system’s dynamics for any series Fk of n(r)11 values of F, which satisfies the con-

dition (k� 1)/n(r)oFk � k/n(r) (k 5 0, 1, . . ., n(r)). To avoid rounding problems in

what follows, we employ the series

Fk ¼ k=nðrÞ � 1=ð2nðrÞÞ; where k ¼ 0; 1; . . . ; nðrÞ; ð1Þ

F 5 F0 provides the same results as F 5 0 and corresponds to the case where agents

are absolutely insensitive to neighbors. F 5 F1 provides the same results as F 5 1/n(r)

and is characteristic of agents who demand at least one friend in a fully occupied

neighborhood. This progression continues until F 5 Fn(r), which characterizes

agents who demand a neighborhood occupied solely by friends.

The initial set of agents is established by initiating M 5 Round ((1� d)N2) agents

and by assigning type B to the MB 5 Round (b(1� d)N2) of them and type G to the

remaining MG 5 M�MB agents. The random pattern (as in Fig. 1a) is constructed by

randomly locating all agents over the N � N city grid. The properties of the initial

segregated pattern are similar to that in Fig. 1b, but the pattern itself is constructed by

locating all B-agents on the N � N grid at 100% density, beginning from its left bor-

der, column after column, from the top to the bottom border within each column

and, symmetrically, by locating G-agents beginning from the right border, column

after column, from the bottom to the top border within each column.

Characterizing model patterns

Moran’s I as an index of segregation

To characterize the model’s spatial pattern, we define a spatial variable xh: xh 5 1 if

h is occupied by the B-agent and xh 5 0 otherwise; xh is ignored if h is empty. Of the

several ways to characterize a pattern’s segregation level, we chose Moran’s I index

of spatial association (Getis and Ord 1992; Anselin 1995; Zhang and Linb 2007)

applied to the binary data (Lee 2001; Griffith 2010).

Simulation modeling has difficulties revealing all possible dynamic regimes

for a given set of parameters. One can easily miss stable equilibria with narrow

domains of attraction, especially if other stable equilibria exist whose domains of
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attraction are wide. In attempting to avoid errors of this kind, we perform extensive

numeric experiments with different sets of parameters before the investigation of

the model.

Pattern randomness and segregation criteria

To recognize random-like patterns, we first conduct a permutation test for the

50 � 50 random city and obtain (� 0.02, 0.02) and (� 0.03, 0.03) as the 95% and

99% confidence intervals for Moran’s I, respectively. Consequently, we consider

the 50 � 50 pattern as nonrandom in the case of Moran’s I40.03. In addition to

Moran’s I, we employ, when necessary, additional indices for characterizing non-

random patterns.

In situations of liquid dynamics, the model patterns can vary. Nevertheless, a

pattern’s level of segregation can remain the same. To reflect this possibility, we

call the model pattern characterized by Moran’s I 5 I0 ‘‘persistent’’ if the value of I0
remains within the interval (I0� 0.03, I010.03) during at least 100,000 time steps.

The basic view of the Schelling model’s dynamics

Our numeric experiments demonstrate that for random initial conditions, the

agents’ residential patterns either remain random infinitely for low F or converge

to a segregated pattern for high F. In the latter case, the patterns’ dynamics consist

of two phases, characterized by the dynamics of the unhappy agents; that is, those

located in neighborhoods where fa(h)oF:

� In the first phase, the pattern contains many unhappy agents, the fraction of

whom quickly drops to almost zero during some hundred time steps. During

this phase, segregated patches appear and expand.

� In the second phase, the pattern changes slowly. The fraction of unhappy

agents remains close to zero and therefore is uncharacteristic of the pattern.

Some segregated patches continue to grow, while others contract, although the

overall number of patches decreases. The segregated pattern, once it emerges

is infinitely sustained.

For values of F at the boundary that separates the values generating random-

like patterns from those generating segregated patterns, the first phase could be very

long and varies in length between executions (Fig. 3); for an expanded discussion,

see Durrett (1999).

Given F, b, and r, the duration of the first and second phases for the non-

boundary values of F is determined by d and m. For the investigated values of

d 5 0.02 and m 5 0.01, the duration of the first phase is at most some hundred time

steps.

The long-run evolution of patterns that do not stall (i.e., are liquid-like) should

be treated with care. Typical practice is to run the model for a million time steps

(Vinkovic and Kirman 2006) in the hope that the pattern reaches a persistent state
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by the end of this extremely long period. Ensuing results are based on the long run

of t 5 500,000 time steps.

Schelling’s basic case: two groups of equal size (b5 0.5)

The case of b5 0.5 corresponds to Schelling’s original formulation. Our goal is to

reproduce the qualitative aspects of the model dynamics; that is, for low F, the

residential distribution converges to a random pattern, whereas for high F, it con-

verges to a segregated pattern irrespective of the initial conditions. To verify this

prediction, we perform 30 executions/model runs for each value of F given by

equation (1) for r 5 1, 2, 3, and 4, as well as for two types of initial conditions,

random and segregated.

Fig. 4a presents a set of typical emerging patterns and corresponding values of I

for r 5 1. To better characterize the model behavior as dependent on F, we denote

the maximal F-value at which, for any initial distribution of agents, the pattern re-

mains random for t ! 1, by Fr, rand. Similarly, let Fr, segr be the minimal F-value at

which, for any initial distribution of agents, the pattern remains segregated for

t! 1. According to our numeric experiments, at t 5 500,000 for r 5 1, 2, and 3,

Fr, segr 5 Fr, rand11/n(r); that is, the persistent model pattern does not depend on the

initial conditions of these values of r (Table 1, rows 1–3). For r 5 4, the situation is

more complex (Table 1, row 4): for F 5 18/80–21/80, the initially random pattern

remains random, while the initially segregated pattern remains segregated up to

t 5 500,000. Based on Durrett (1999), we expect 500,000 time steps to be insuffi-

cient for pattern convergence in these cases; but investigation of these dynamics

Figure 3. The model dynamics described by Moran’s I and the fraction of happy agents for

the boundary value of F 5 11/48 (r 5 3, b5 0.5).
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goes far beyond Schelling’s view of the local determinants of residential dynamics

and remains for future research. Note that for all r, the value of Fr, segr is below the

F � 1/3 given by Schelling.

Figure 4. Persistent patterns for the representative sets of model parameters: (a) r 5 1,

m 5 0.01, d 5 0.02, b5 0.5, varying F; (b) r 5 3, m 5 0.01, d 5 0.02, b5 0.25, varying F;

(c) r 5 1, m 5 0, varying d, b5 0.5, varying F.

Table 1 Fr, rand, Fr, segr for r 5 1–4, b5 0.5

r n(r) Fr, rand Fr, segr

1 8 1/8 5 0.1250 2/8 5 0.2500

2 24 4/24 5 0.1667 5/24 5 0.2083

3 48 10/48 5 0.2083 11/48 5 0.2292

4 80 17/80 5 0.2125� 21/80 5 0.2625�

Note: The city is a 50 � 50 torus. �For F 5 18/80, 19/80, and 20/80, the initially random

pattern remains random at t 5 500,000, while the initially segregated pattern remains seg-

regated at t 5 500,000.
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We now extend the standard framework and investigate the dynamics of

Schelling’s model in the case where B-agents are the minority.

The minority group’s patterns (bo0.5)

The new mixed patterns

Study of the Schelling model’s dynamics for the case where the B-agents are the

minority (i.e., bo0.5) reveals major new patterns, yet to be ascribed to this model,

that are neither random nor completely segregated. We henceforth call these pat-

terns mixed. In mixed patterns, a part of the area is exclusively occupied by the

members of the majority, while the remaining area is occupied by agents of both

types (Fig. 4b).

Mixed patterns: characterization

The patterns in Fig. 4b clearly show that we need to characterize the segregated as

well as aggregated parts prior to investigating mixed patterns. Moran’s I calculated

for the entire city is insufficient for this purpose.

To characterize a mixed pattern, we divide it into four regions (Fig. 5). First, let

G^ be the part of the city occupied by the majority group G exclusively. We dis-

tinguish between internal part iG^ and the boundary nG^ of G^. A cell h belongs to

iG^ if h and all cells of the U(h) are either occupied by G-agents or are empty. Cells

that belong to the neighborhood of some cell from iG^, but not to iG^ itself,

comprise nG^.

Second, let G1 complement the G^ part of the city. In the case of a segregated

city, G1 is a homogeneous part occupied by the minority; otherwise, G1 represents

the heterogeneous part of the city. We define the internal part iG1 of G1 as all cells

h whose neighborhood U(h) does not intersect G^, and the boundary nG1 as the

Figure 5. (a) A mixed pattern; (b) partition of the mixed pattern into four parts—iG^, nG^,

nG1, and iG1.
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remaining G1 cells. With an increase in r, iG^ and iG1 shrink, whereas nG^ and

nG1 expand.

In addition to Moran’s I calculated for the entire city, we characterize the

mixed patterns by three measures applied to the mixed part G1:

� b1: the fraction of minority agents within G1;

� I1: the value of Moran’s I calculated for the internal part iG1(b) of the hetero-

geneous area; and

� S(G1): the area of G1 as a fraction of the entire city area.

Study of the mixed patterns

The hypothesis formulated on the basis of Fig. 4 is as follows: for bo0.5, three types

of persistent patterns—random, mixed, and fully segregated—substitute for one

another as F grows.

To test this hypothesis, we denote as Fr, rand(b) the maximal F-value at which,

given b, the persistent pattern converges to random for any initial distribution of

agents when t! 1. We denote as Fr, segr(b) the minimal F-value at which, given b,

the pattern converges to segregated for any initial distribution of agents when

t! 1. To avoid complications related to the difference between Fr, rand(b) and

Fr, segr(b), obtained for b5 0.5 when r 5 4, we limit ourselves to cases of r 5 1–3.

By definition, the city is random for FA[0, Fr, rand(b)], and the city is segregated

for FA[Fr, segr(b), 1]. As demonstrated in the section ‘‘Schelling’s basic case,’’ for

r 5 1–3 and b5 0.5, Fr, rand(0.5) and Fr, segr(0.5) are sequential values of Fk, as given

by formula (1); that is, Fr, segr(0.5) 5 Fr, rand(0.5)11/n(r). We hypothesize that for

bo0.5 the interval [Fr, rand(b), Fr, segr(b)� 1/n(r)] is nonzero; its width increases with

a decrease in b. For F, the persistent pattern is mixed within this interval.

To confirm this hypothesis, we perform a set of simulation experiments for the

values of r 5 1–3, with b varying from 0.05 to 0.45, by increments of 0.05. Typical

dependencies of Moran’s I for the entire city, b1, and S(G1) on F for r 5 3 and for

b5 0.1, 0.25 and 0.5, are shown in Fig. 6.

Analysis of the full set of simulation results implies the following conclusions:

� The value of Fr, segr(b) does not depend on b; that is, Fr, segr(b) 5 Fr, segr (Fig. 6a–

c).

� The lower b, the lower Fr, rand(b) (Fig. 6a).

� The pattern of the iG1(b) is random for FA[0, Fr,s egr� 1/n(r)] and populated

exclusively by the minority for FA[Fr, segr, 1] (Fig. 6a).

� The density b1 of the B-agents in G1(b) is always higher than b, grows with an

increase in F within [Fr, rand(b), Fr, segr� 1/n(r)], and always bypasses b1 5 0.5

for F 5 Fr, segr� 1/n(r) (Fig. 6b).

� For values of F close to zero, G1(b) covers the city’s entire area. With the

growth of F within the interval [Fr, rand(b), Fr, segr� 1/n(r)], the area of G1(b)

decreases, stabilizing at b for F � Fr, segr (Fig. 6c).3
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The model’s robustness

Let us consider the importance of the three qualitative assumptions made:

� a low but nonzero fraction of empty cells d;

� a nonzero probability of spontaneous migration m; and

� satisficing behavior by agents.

The values of d and m: The values we employ, d 5 0.02 and m 5 0.01, are

chosen to reflect a real city, where empty locations (although perhaps not many)

are always available for occupation. Additionally, abundant reasons exist for res-

idential migration beyond reactions to neighbors.

In the case of the 50 � 50 city that we use for simulation experiments, d 5 0.02

results in 50 empty locations. We also investigate the model’s behavior for a

lower d; that is, for fewer empty locations in the city. Simulation results do not

change until the fraction of empty locations falls below d 5 0.01. For a few empty

locations and for some of the random initial patterns, the model stalls because

all vacancies are of low utility, meaning that no agents want to relocate there.

As should be expected, the fraction of the initial patterns that stall grows with a

decrease in d.

The value of m40 also prevents the model’s pattern from stalling in the solid-

like state, where no agents can improve their utility. We test the sensitivity of the

model’s persistent patterns to variations of m for mA(0.01, 0.05) and find that they

do not fundamentally change, whereas an increase in m accelerates and a decrease

in m decelerates convergence to a persistent pattern. In the case of m 5 0, the

model generates a variety of solid-like patterns, as shown in Fig. 4c.

The simulations clearly demonstrate that in the solid-like state the structure of

the stalled pattern is very sensitive to the model’s parameters and rule details, such

as whether the fraction of friends is calculated by dividing by the size of an entire

neighborhood, as in Vinkovic and Kirman (2006), or by the number of occupied

cells in the neighborhood, as in our simulation.

Agents’ satisficing behavior: According to the behavioral rules (See ‘‘Model

rules and definitions’’), the model’s agents are satisficers (Simon 1982); that is, they

do not distinguish among potential locations provided that the number of friends is

above the threshold. To investigate the importance of this assumption, we replace

the satisficing choice rule with the maximization rule: the more friends the better.

Formally, maximizing agent a estimates the utility of vacancy h as u(h) 5 fa(h). This

Figure 6. Characteristics of persistent patterns for r 5 3 depending on minority fraction b and

F, b5 0.05–0.5 with steps of 0.05, F 5 0/48–20/48 with steps of 1/48, and random initial

conditions: (a) Moran’s I for the entire city; (b) the fraction b1 of minority agents within

G1(b); (c) S(G1(b)) as a fraction of the entire city area. Fr, rand(b) and Fr, segr(b) are marked on

(a) only but are applicable to (a)–(c). Note that G1(b) is the union of the iG1 and nG1 do-

mains as shown in Fig. 5.
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assumption’s consequence is as expected, Maximizers always segregate. Irrespec-

tive of F, the pattern always converges to complete segregation.

Conclusions and discussion

Our results essentially extend Schelling’s (1978, pp. 147–48) observations. Given a

neighborhood’s radius r and the fraction of minority b, the model’s pattern con-

verges to one of three—and not two, as Schelling claims—persistent states. Each

persistent state is defined by F, with the [0, 1] interval of F variability divided into

three parts: for FA[0, Fr, rand(b)], the persistent residential pattern is random; for

FA(Fr, rand(b), Fr, segr), it is mixed; and for FA[Fr, segr, 1], it is segregated.

The mixed urban pattern, characteristic of FA(Fr, rand(b), Fr, segr), consists of a

homogeneous part, occupied by the majority, and a heterogeneous part, randomly

occupied by agents of both types. The density of the minority in the mixed part is

always greater than b and grows with F.

After investigating the model’s formal properties, the principal question becomes:

how can we relate the model to real-world residential dynamics? Three persistent

residential patterns are obtained with the model when four conditions are met:

(1) The fraction d of empty locations in a city is sufficiently high. The value

employed in the simulations is d 5 0.02; an additional investigation shows

that liquid dynamics are sustained until d remains above � 0.01. For lower

fractions of empty locations, the system stalls in a state where none of the

agents who are unhappy with their neighborhood can reside elsewhere.

(2) The probability m that an agent would reside in a neighborhood irrespective

of the neighborhood structure is nonzero. The value employed in our sim-

ulations is m 5 0.01; that is, 1% of the agents decide to move at each time

step despite their residence in a friendly neighborhood. For m 5 0, the res-

idential pattern stalls, similar to what happens when the number of empty

locations is insufficient for migration.

(3) The radius r of the neighborhood is three or lower. For r43, model dynamics

may depend on initial conditions: for the same set of parameters, initially

random patterns remain random, while initially segregated patterns remain

segregated. This phenomenon demands further investigation. Until then, we

can qualitatively conclude that the model results are robust in cases when

agents react to neighbors located in sufficiently close proximity to their actual

or potential location.

(4) Most importantly, the behavior of the model agents must be satisficing. Namely,

agents should not distinguish between locations so long as the fraction of friends

around those locations is � F. Alternatively, if we assume that agents always

relocate to locations within the neighborhood having the maximum possible

fraction of friends, the model dynamics become solid-like, residential patterns

become segregated for any F, and a great variety of stalled and segregated pat-

terns are obtained, depending on the model parameters and initial conditions.
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We thus conclude that the conditions necessary for solid model dynamics are

unrealistic. Socially meaningful extensions and interpretations of the Schelling

model should consider a population with sufficiently high fractions of satisficing

agents, whose behavior provides a sufficient degree of the indeterminism nec-

essary for liquid-like system dynamics.

Our recent research about ethnic residential dynamics in Israeli cities, con-

ducted at the resolution level of the separate family and building and employing the

individual Israeli population census for 1995 (Benenson, Omer, and Hatna 2002;

Benenson, Hatna, and Or 2009), supports the view of mixed residential patterns. In

Israeli cities with mixed Jewish and Arab populations of similar socioeconomic

status—Yaffo in Tel Aviv, Ramle, and Lod—the Arab minority is concentrated

within some neighborhoods; the remaining areas of these cities are populated al-

most exclusively by the Jewish majority. At a closer glance, however, the popula-

tion of the Arab neighborhoods is mixed, and the fraction of the Jewish population

in these mixtures varies between 30% and 60%. In other words, the real-world

patterns correspond to those obtained in the model for the case of relatively low

F. The latter can be interpreted as indicating the relatively high tolerance of Jewish

and Arab residential agents for one another. We consider this correspondence as

encouraging and plan to repeat the investigation in additional cities and in greater

detail after the data collected during the individual-based Israeli population census

for 2008 becomes officially available, toward the end of 2011. The merger of data

from two censuses (1995 and 2008) also will enable construction of individual

migration records, facilitating investigation of the relationship between individual

residential choices and group residential patterns during the respective period

(1995–2008).

Notes

1 The number of neighbors in the neighborhood is finite, so it does not matter whether ‘‘less

than’’ or ‘‘less than or equal’’ is employed in the definition; we employ Schelling’s original

use of ‘‘less’’ versus ‘‘greater than or equal.’’

2 http://www.econ.iastate.edu/tesfatsi/demos/schelling/schellhp.htm (accessed April 4,

2011) and R. Koenig’s application at http://www.entwurfsforschung.de/RaumProzesse/

Segregation.htm (accessed April 4, 2011) can be starting points. More complex situations

involving agents differing in several characteristics can be investigated with the help of M.

Fosset’s application; see http://sociweb.tamu.edu/vlabresi/vlab.htm (accessed April 4,

2011).

3 Some of these simulation results can be confirmed analytically; see Benenson and Hatna

(2009).
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